K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2023

Ta có: 

\(\left(3x-1\right)^5\)\(=\sum\limits^5_{k=0}.\left(-1\right)^k.C^k_5.\left(3x\right)^{5-k}.1^k\)

               \(=\sum\limits^5_{k=0}.\left(-1\right)^k.C^k_5.3^{5-k}.x^{5-k}.1\)

Để số hạng tổng quát có chứa \(x^4\) thì \(5-k=4\Rightarrow k=1\)

Vậy hệ số của \(x^4\) là: \(\left(-1\right)^1.C^1_5.3^{5-1}.1=-405\) 

→ Không có đáp án

loading...  loading...  

21 tháng 3 2023

Thanks you

15 tháng 12 2021

\(\left(3x+1\right)^6=\sum\limits^6_{k=0}C^k_6.\left(3x\right)^k=\sum\limits^6_{k=0}C^k_6.3^kx^k\)

\(\Rightarrow k=4\)

\(\Rightarrow\) Hệ số của \(x^4\) trong khai triển \(\left(3x+1\right)^6\) là: \(C^4_6.3^4=1215\)

3 tháng 8 2018

ta có : \(\left(1-3x\right)^n=\sum\limits^n_{k=0}C^k_n\left(1\right)^{n-k}\left(-3\right)^k\left(x^k\right)\)

để có \(x^2\) trong khai triển thì \(k=2\)

khi đó hệ số của số hạng chứa \(x^2\)\(\)\(C^2_n\left(-3\right)^2=90\)

\(\Leftrightarrow C^2_n=10\Leftrightarrow\dfrac{n!}{2!\left(n-2\right)!}=10\) \(\Leftrightarrow\dfrac{n\left(n-1\right)}{2}=10\)

\(\Leftrightarrow n^2-n-20=0\left[{}\begin{matrix}n=5\left(N\right)\\n=-4\left(L\right)\end{matrix}\right.\) vậy \(n=5\)

25 tháng 2 2018

+ Số hạng tổng quát của khai triển (1 – 3x)n là:

Giải bài tập Đại số 11 | Để học tốt Toán 11

+ Số hạng chứa x2 ứng với k = 2.

Hệ số của x2 là 90 nên ta có:

Giải bài tập Đại số 11 | Để học tốt Toán 11

Vậy n = 5.

17 tháng 4 2017

12 tháng 6 2018

Chọn B.

  ( 2 + 3 x ) 5 có công thức số hạng tổng quát là: .

Với k = 4, ta được số hạng .

Vậy hệ số của số hạng chứa  x 4  trong khai triển  ( 2 + 3 x ) 5  là 810.

25 tháng 3 2019

Đáp án A.

3 tháng 4 2017

 

Với số thực x ≠ 0 và với mọi số tự nhiên n ≥ 1, ta có:

(1 - 3x)n = [1 - (3x)]n = Ckn (1)n – k (-3)k . xk.

Suy ra hệ số của x2trong khai triển này là 32C2n .Theo giả thiết, ta có:

32C2n = 90 => C2n = 10.

Từ đó ta có:

= 10 ⇔ n(n - 1) = 20.

⇔ n2 – n – 20 = 0 ⇔ n = -4 (loại) hoặc n = 5.

ĐS: n = 5.

Hệ số của x^4 sẽ là tổng của 2*a và 1*b, với a là hệ số của x^3 trong (x-1)^5, b là hệ số của x^4 trong (x-1)^5

SHTQ là: \(C^k_5\cdot x^{5-k}\cdot\left(-1\right)^k=C^k_5\cdot\left(-1\right)^k\cdot x^{5-k}\)

Số hạng chứa x^3 tương ứng với 5-k=3

=>k=2

=>Hệ số là \(C^2_5\cdot\left(-1\right)^2=10\)

Số hạng chứa x^4 tương ứng với 5-k=4

=>k=1

=>Hệ số là \(C^1_5\cdot\left(-1\right)=-5\)

=>Hệ số của x^4 là: 2*10+1*(-5)=20-5=15