Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với số thực x ≠ 0 và với mọi số tự nhiên n ≥ 1, ta có: (1 - 3x)n = [1 - (3x)]n = Ckn (1)n – k (-3)k . xk. Suy ra hệ số của x2trong khai triển này là 32C2n .Theo giả thiết, ta có: 32C2n = 90 => C2n = 10. Từ đó ta có: = 10 ⇔ n(n - 1) = 20. ⇔ n2 – n – 20 = 0 ⇔ n = -4 (loại) hoặc n = 5. ĐS: n = 5. |
Số hạng thứ \(k+1\) của khai triển là :
\(t_{k+1}=C^k_n\left(3x\right)^k\)
Vậy số hạng chứa \(x^2\) là \(t_3=C^2_n9.x^2\)
Theo đề bài ta có :
\(9.C^2_n=90\Leftrightarrow C^2_n=10\Leftrightarrow n=5\)
Bài 1:
\(\left(x^{-\frac{1}{5}}+x^{\frac{1}{3}}\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(x^{-\frac{1}{5}}\right)^k\left(x^{\frac{1}{3}}\right)^{10-k}=\sum\limits^{10}_{k=0}C_{10}^kx^{\frac{10}{3}-\frac{8k}{15}}\)
Trong khai triển trên có 11 số hạng nên số hạng đứng giữa có \(k=6\)
\(\Rightarrow\) Số hạng đó là \(C_{10}^6x^{\frac{10}{3}-\frac{48}{15}}=C_{10}^6x^{\frac{2}{15}}\)
Bài 2:
\(\left(1+x^2\right)^n=a_0+a_1x^2+a_2x^4+...+a_nx^{2n}\)
Cho \(x=1\Rightarrow2^n=a_0+a_1+...+a_n=1024=2^{10}\)
\(\Rightarrow n=10\)
\(\left(1+x^2\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^kx^{2k}\)
Số hạng chứa \(x^{12}\Rightarrow2k=12\Rightarrow k=6\) có hệ số là \(C_{10}^6\)
Bài 3:
\(\left(x-\frac{1}{4}\right)^n=\sum\limits^n_{k=0}C_n^kx^k\left(-\frac{1}{4}\right)^{n-k}\)
Với \(k=n-2\Rightarrow\) hệ số là \(C_n^{n-2}\left(-\frac{1}{4}\right)^2=\frac{1}{16}C_n^2\)
\(\Rightarrow\frac{1}{16}C_n^2=31\Rightarrow C_n^2=496\Rightarrow n=32\)
Bài 4:
Xét khai triển:
\(\left(1+x\right)^n=C_n^0+xC_n^1+x^2C_n^2+...+x^nC_n^n\)
Cho \(x=2\) ta được:
\(\left(1+2\right)^n=C_n^0+2C_n^1+2^2C_n^2+...+2^nC_n^n\)
\(\Rightarrow S=3^n\)
Bài 5:
Xét khai triển:
\(\left(1+x\right)^n=C_n^0+xC_n^1+x^2C_n^2+...+x^{2k}C_n^{2k}+x^{2k+1}C_n^{2k+1}+...\)
Cho \(x=-1\) ta được:
\(0=C_n^0-C_n^1+C_n^2-C_n^3+...+C_n^{2k}-C_n^{2k+1}+...\)
\(\Rightarrow C_n^0+C_n^2+...+C_n^{2k}+...=C_n^1+C_n^3+...+C_n^{2k+1}+...\)
Bài 6:
\(\left(1-4x+x^2\right)^5=\sum\limits^5_{k=0}C_5^k\left(-4x+x^2\right)^k=\sum\limits^5_{k=0}\sum\limits^k_{i=0}C_5^kC_k^i\left(-4\right)^ix^{2k-i}\)
Ta có: \(\left\{{}\begin{matrix}2k-i=5\\0\le i\le k\le5\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(1;3\right);\left(3;4\right);\left(5;5\right)\)
Hệ số: \(\left(-4\right)^1.C_5^3C_3^1+\left(-4\right)^3C_5^4.C_4^3+\left(-4\right)^5C_5^5.C_5^5\)
\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)
Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn
Vậy trong khai triển trên ko có số hạng chứa \(x^8\)
b/ \(\left(1-x^2+x^4\right)^{16}\)
\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)
\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)
Hệ số của số hạng chứa \(x^{16}\):
\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)
c/ SHTQ của khai triển \(\left(1-2x\right)^5\) là \(C_5^k\left(-2\right)^kx^k\)
Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)
SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)
Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)
\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)
\(\left(x+x^{-1}\right)^n=\sum\limits^n_{k=0}C_n^kx^k\left(x^{-1}\right)^{n-k}=\sum\limits^n_{k=0}C_n^kx^{2k-n}\)
Theo bài ra ta có: \(C_n^2-C_n^1=35\)
\(\Leftrightarrow\frac{n!}{2!\left(n-2\right)!}-\frac{n!}{\left(n-1\right)!}=35\)
\(\Leftrightarrow\frac{n\left(n-1\right)}{2}-n=35\)
\(\Leftrightarrow n^2-3n-70=0\Rightarrow n=10\)
Số hạng ko chứa x \(\Rightarrow2k-n=0\Rightarrow k=\frac{n}{2}=5\)
Số hạng đó là \(C_{10}^5\)
\(\sum_{k=1}^nC^k_{2n+1}=2^{20}-1\)
\(\frac{\sum_{k=1}^n\left(2C^k_{2n+1}\right)+1+1}{2}=2^{20}\)
\(C^0_{2n+1}+\sum_{k=1}^n\left(C^k_{2n+1}+C_{2n+1}^{2n+1-k}\right)+C^{2n+1}_{2n+1}=2^{21}\)
\(\sum_{k=0}^{2n+1}C^k_{2n+1}=2^{21}\)
\(\Rightarrow2n+1=21\Rightarrow n=10\)
Số hạng chứa \(x^{26}\) có dạng là:
\(C^k_{10}.\left(\frac{1}{x^4}\right)^k.\left(x^7\right)^{10-k}\Rightarrow-4k+7.\left(10-k\right)=26\)
\(\Rightarrow k=4\)
hệ số của \(x^{26}\) là:
\(C^4_{10}=210\)
(x+ )6 = Ck6 . x6 – k . ()k = Ck6 . 2k . x6 – 3k
Trong tổng này, số hạng Ck6 . 2k . x6 – 3k có số mũ của x bằng 3 khi và chỉ khi
⇔ k = 1.
Do đó hệ số của x3 trong khai triển của biểu thức đã cho là:
2 . C16 = 2 . 6 = 12.
+ Số hạng tổng quát của khai triển (1 – 3x)n là:
+ Số hạng chứa x2 ứng với k = 2.
Hệ số của x2 là 90 nên ta có:
Vậy n = 5.