Tìm x biết \(\frac{4x^9}{x^6}=x\) (x khác 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4x-\sqrt{x^2-4x+4}=4x-\sqrt{\left(x-2\right)^2}=4x-\left(x-2\right)=3x+2\)
b) \(3x+\sqrt{9+6x+x^2}=3x+\sqrt{\left(x+3\right)^2}=3x-\left(x+3\right)=2x-3\)
c) \(\frac{x+6\sqrt{x}+9}{x-9}=\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
d) \(\frac{\sqrt{x^2+4x+4}}{x+2}=\frac{\sqrt{\left(x+2\right)^2}}{x+2}=\frac{\left|x+2\right|}{x+2}\)( 1 )
với x < -2 thì : \(\left(1\right)\Leftrightarrow\frac{-\left(x+2\right)}{x+2}=-1\)
với x > -2 thì : \(\left(1\right)\Leftrightarrow\frac{\left(x+2\right)}{x+2}=1\)
a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)
\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)
\(=\dfrac{-1}{\sqrt{x}-2}\)(1)
b) Ta có: \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Thay x=0 vào biểu thức (1), ta được:
\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)
Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)
Điều kiện : \(x^2-9\ne0\Rightarrow\orbr{\begin{cases}x-3\ne0\\x+3\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne3\\x\ne-3\end{cases}}\)
Để \(\frac{3x-2}{x^2-9}=0\)
\(\Rightarrow3x-2=0\)
\(\Rightarrow x=\frac{2}{3}\)
\(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(=\left[\frac{x^2}{x\left(x^2-4\right)}+\frac{-6}{3\left(x-2\right)}+\frac{1}{x+2}\right]:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)
\(=\left[\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{-2}{x-2}+\frac{1}{x+2}\right]:\left[\frac{x^2-4}{x+2}+\frac{10-x^2}{x+2}\right]\)
\(=\left[\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{-2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]:\left[\frac{x^2-4+10-x^2}{x+2}\right]\)
\(=\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}=\frac{-1}{x-2}\)
b) ( 2x - 3 ) - ( 3 - 2x )( x - 1 ) = 0
<=> ( 2x - 3 ) + ( 2x - 3 )( x - 1 ) = 0
<=> ( 2x - 3 )( 1 + x - 1 ) = 0
<=> x( 2x - 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)
Vậy .....
a, 25x^2 - 1 - (5x -1)(x+2)=0
=> (5x)^2 - 1 + (5x-1)(x+2) = 0
=> (5x-1)(5x+1) + (5x-1)(x+2) = 0
=> (5x-1)(5x+1+x+2) = 0
=> (5x-1)(6x+3) = 0
=> \(\orbr{\begin{cases}5x-1=0\\6x+3=0\end{cases}}\)
\(\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4\sqrt{x}}+\frac{4x\sqrt{x}+4\sqrt{x}}{4x^2+9x+18\sqrt{x}+9}-2=\frac{\left(-4x\sqrt{x}+4x^2+9x+22\sqrt{x}+9\right)^2}{\left(4x^2+9x+18\sqrt{x}+9\right)\left(4x\sqrt{x}+4\sqrt{x}\right)}\ge0\)
Đặt \(M=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}\left(x>0\right)\Rightarrow M>0\)
Đặt \(y=\sqrt{x}>0\)ta có \(M=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}=\frac{4y^4+9y^2+18y+9}{4y^3+4y^2}\)\(=\frac{3\left(4y^3+4y^2\right)+\left(4y^2-12y^3-3y^2+18y+9\right)}{4y^3+4y^2}=3+\frac{\left(2y^2-3y-3\right)^2}{4y^3+4y^2}\ge3\)
\(y>0\Rightarrow\hept{\begin{cases}4y^3+4y^2>0\\\left(2y^2-3y-3\right)^2\ge0\end{cases}\Rightarrow\frac{\left(2y-3y-3\right)^2}{4y^3+4y^2}\ge0}\)
Đẳng thức xảy ra \(\Leftrightarrow2y^2-3y-3=0\Leftrightarrow y=\frac{3+\sqrt{33}}{4}\left(y>0\right)\)
\(\Rightarrow x=\left(\frac{3+\sqrt{33}}{4}\right)^2=\frac{21+3\sqrt{33}}{8}\)
Khi đó \(A=M+\frac{1}{M}=\frac{8M}{9}+\left(\frac{M}{9}+\frac{1}{M}\right)\ge\frac{8\cdot3}{9}+2\sqrt{\frac{M}{9}\cdot\frac{1}{M}}=\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)
Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}M=3\\\frac{M}{9}=\frac{1}{M}\end{cases}\Leftrightarrow M=3\Leftrightarrow x=\frac{21+3\sqrt{33}}{8}}\)
Vậy \(A_{min}=\frac{10}{3}\Leftrightarrow x=\frac{21+3\sqrt{33}}{8}\)
\(\Leftrightarrow4x^3-x=0\Leftrightarrow x\left(4x^2-1\right)=0\Leftrightarrow x\left(2x-1\right)\left(2x+1\right)=0\)
=> x=0 hoặc 2x-1=0 <=> x=1/2 hoặc 2x+1=0 <=> x=-1/2