Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
=> x=8,y=6,z=18
b, \(\hept{\begin{cases}\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\\\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\end{cases}\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3}\)
=> x=-27,y=-21,z=-9
c, \(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\Rightarrow\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
=> x=165,y=20,z=25
a) Đặt 2x - 1 / 5 = 3y + 2 / 4 = 4z - 3 / 5 = k
=> 2x = 5k + 1; 3y = 4k - 2; 4z = 5k + 3
=> 2x - 3y + 4z = 5k + 1 - 4k - 2 + 5k + 3 = 6k + 2 = 9
=> 6k = 9 - 2 = 7
=> k = 7 : 6 = 7/6
2x =5k
Ta có :
\(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}\)
\(=\)\(\frac{2\left(x+1\right)}{4}=\frac{3\left(y+3\right)}{12}=\frac{4\left(z+5\right)}{24}\)
Theo tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{2\left(x+1\right)}{4}=\frac{3\left(y+3\right)}{12}=\frac{4\left(z+5\right)}{24}\)\(=\frac{\left(2x+3y+4z\right)+\left(2+3+5\right)}{4+12+24}\)\(=\)\(\frac{9+10}{40}\)\(=\frac{19}{40}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{19}{40}\\y=\frac{19}{40}\\z=\frac{19}{40}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{19}{40}\cdot2\\y=\frac{19}{40}\cdot4\\z=\frac{19}{40}.6\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0,95\\y=1,9\\z=2,85\end{cases}}\)
Vậy ...
P/s : sai thì thôi =.=
a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
Suy ra : x = 2.6 = 12
y = 2.4 = 8
z = 2.5 = 10
b,c,d tương tự
e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
Tới đây bạn làm tương tự a,b,c,d
f tương tự.
g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Bạn áp dụng dãy tỉ số bằng nhau là ra.
h/ Áp dụng dãy tỉ số bằng nhau :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)
Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.
a) Ta thấy:
\(\frac{x}{2}=\frac{y}{3}\)\(\Rightarrow\frac{x}{2}\cdot\frac{3}{5}=\frac{y}{3}\cdot\frac{3}{5}\)\(\Rightarrow\frac{3x}{10}=\frac{y}{5}\)
Mà \(\frac{y}{5}=\frac{z}{6}\) nên ta có biểu thức: \(\frac{3x}{10}=\frac{y}{5}=\frac{z}{6}\) ( 1 )
Biểu thức ( 1 ) tương đương với:
\(\frac{3x}{10}=\frac{3y}{15}=\frac{3z}{18}=\frac{3x+3y+3z}{10+15+18}=\frac{3\left(x+y+z\right)}{43}=\frac{3\cdot43}{43}=3\)
Khi đó:
\(\frac{3x}{10}=3\) \(\Rightarrow x=\frac{3\cdot10}{3}=10\)
\(\frac{3y}{15}=3\)\(\Rightarrow\frac{y}{5}=3\) \(\Rightarrow y=3\cdot5=15\)
\(\frac{3z}{18}=3\)\(\Rightarrow\frac{z}{6}=3\) \(\Rightarrow z=3\cdot6=18\)
a, Nhân cả hai vế cho 5, ta được: X/10 = Y/15
Tương tự ta có: Y/15 = Z/18
Do đó: X/10 = Z/18 (=Y/15)
Theo đề bài, ta có: (X+Y+Z)/(10+15+18) = 43/43 = 1
X/10=1 => X=10
Y/15=1 => Y=15
Z/18=1 => Z=18