S=\(\frac{1}{^3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}+\frac{1}{3^9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có:
\(\frac{-1}{2}-1\le x\le\frac{1}{2}.3\)
hay \(-1,5\le x\le1,5\)
vì x\(\in Z\) nên ta chọn x=-1,0,1
ta có:
3S=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)
3S-S=\(\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^9}\right)\)
2S=1-\(\frac{1}{3^9}\)
s=\(\left(1-\frac{1}{3^9}\right):2\)
\(S=\frac{\left(9\frac{3}{8}:5,2+3,4.2\frac{7}{34}\right):1\frac{9}{16}}{0,31.8\frac{2}{2}-5,61:27\frac{1}{3}}\)\(\Rightarrow S=\frac{\left(\frac{75}{8}.\frac{5}{26}+\frac{17}{5}.\frac{75}{34}\right):\frac{25}{16}}{\frac{31}{100}.9-\frac{561}{100}.\frac{3}{82}}\)\(\Rightarrow S=\frac{\left(\frac{75.5}{8.26}-\frac{17.75}{5.34}\right).\frac{16}{25}}{\frac{31.9}{100}-\frac{561.3}{100.82}}\)
\(\Rightarrow S=\frac{\left(\frac{375}{208}-\frac{15}{2}\right).\frac{16}{25}}{\frac{279}{100}-\frac{1682}{8200}}\)\(\Rightarrow S=\frac{\frac{-1185}{208}.\frac{16}{25}}{\frac{21196}{8200}}\)\(\Rightarrow S=\frac{-237}{65}:\frac{21196}{8200}\)\(\Rightarrow S=\frac{-194340}{137774}\)
\(\Rightarrow x=\frac{2}{3}S\Rightarrow x=\frac{2}{3}.\frac{-194340}{137774}\Rightarrow x=\frac{-388680}{413322}\)
\(M=\frac{23\frac{11}{15}-26\frac{13}{20}}{12^2+5^2}:\frac{1-\frac{1}{3}-\frac{1}{42}-\frac{1}{56}}{3^2.13.2}-\frac{19}{37}\)\(\Rightarrow M=\frac{\frac{356}{15}-\frac{533}{20}}{12^2+5^2}:\frac{\frac{5}{8}}{3^2.13.2}-\frac{19}{37}\)
\(\Rightarrow M=\frac{\frac{-35}{12}}{12^2+5^2}.\frac{3^2.13.2}{\frac{5}{8}}-\frac{19}{37}\)\(\Rightarrow M=\frac{-84}{13}-\frac{19}{37}\Rightarrow M=\frac{-3355}{481}\Rightarrow15\%M=\frac{-3355}{481}.15\%\Rightarrow15\%M=\frac{-2013}{1924}\)
Ta có :
\(S=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^9}\)
\(\Leftrightarrow\)\(3S=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)
\(\Leftrightarrow\)\(3S-S=\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)-\left(\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^9}\right)\)
\(\Leftrightarrow\)\(2S=\frac{1}{3}-\frac{1}{3^9}\)
\(\Leftrightarrow\)\(2S=\frac{3^8-1}{3^9}\)
\(\Leftrightarrow\)\(S=\frac{3^8-1}{2.3^9}\)
Ở đây mk chỉ ghi \(...\) cho nhanh nếu bạn làm vào vở thì ghi đầy đủ ra nhé
Đặt A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}+\frac{1}{3^8}+\frac{1}{3^9}\)
=>\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)
=>3A-A=\(\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)-\)\(\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}+\frac{1}{3^8}+\frac{1}{3^9}\right)\)
=>2A=\(1-\frac{1}{3^9}\)
=>A=\(\frac{9841}{19683}\)
đặt biểu thức trên là A
ta có
3A=3(1/3+1/3^2+1/3^3+1/3^4+....+1/3^9)
3A=1+1/3+1/3^2+...+1/3^8
3A-A=1+1/3+1/3^2+...+1/3^8-(1/3+1/3^2+1/3^3+..+1/3^9)
2A=1-1/3^9
2A=3^9-1/3^9
A=3^9-1/3^9.2
vậy A=3^9-1/3^9.2
\(S=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.\frac{9}{10}\)
\(S=\frac{1}{10}\)
học tốt
S=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.......\frac{9}{10}\)
S=\(\frac{1.2.3....9}{2.3.4...10}=\frac{1}{10}\)
Vậy S=\(\frac{1}{10}\)
S = 1/3 + 1/32 + ... + 1/39
=> 3S = 1 + 1/3 + ... + 1/38
=> 3S - S = 1 + 1/3 + ... + 1/38 - 1/3 - 1/32 + ... - 1/39
=>2S = 1 - 1/39 = (39 - 1)/39
=> S = (39 - 1)/(2.39)