\(\frac{1}{3^2}\)+\(\frac{1}{3^3}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2018

Ta có : 

\(S=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^9}\)

\(\Leftrightarrow\)\(3S=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)

\(\Leftrightarrow\)\(3S-S=\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)-\left(\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^9}\right)\)

\(\Leftrightarrow\)\(2S=\frac{1}{3}-\frac{1}{3^9}\)

\(\Leftrightarrow\)\(2S=\frac{3^8-1}{3^9}\)

\(\Leftrightarrow\)\(S=\frac{3^8-1}{2.3^9}\)

Ở đây mk chỉ ghi \(...\) cho nhanh nếu bạn làm vào vở thì ghi đầy đủ ra nhé 

30 tháng 4 2019

bạn còn on ko

25 tháng 4 2018

a) = 3/3 x ( -24/54 +45/54 ) : 7/12

   = 1 x 21/54 x 12/7

   = 18/27 

( hiện tại mik chỉ lm đc thế này thui. thông cảm nk )

24 tháng 4 2017

\(\left(6+\left(\frac{1}{2}\right)^3-\left|-\frac{1}{2}\right|\right):\frac{3}{12}\)

\(=\left(6+\frac{1}{8}+\frac{1}{2}\right):\frac{1}{4}\)

=\(\frac{53}{8}:\frac{1}{4}\)

\(=\frac{53}{2}\)

24 tháng 4 2017

a)30/60,-40/60,45/60,48/60

45/60>30/60>-40/60>-48/60

=3/4>1/2>-2/3>-4/5

8 tháng 5 2019

Cộng các tổng ở các mẫu số được:    \(S=1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}.\) 

       \(\Leftrightarrow S=1+\frac{1}{2}\left(1-\frac{1}{3}\right)+\frac{1}{6}+\frac{1}{10}+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{21}+\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{1}{36}.\) 

        Thực hiện các phép nhân một số với một hiệu ,được:

            \(S=1+\frac{1}{2}-\frac{1}{6}+\frac{1}{6}+\frac{1}{10}+\frac{1}{6}-\frac{1}{15}+\frac{1}{21}+\frac{1}{12}-\frac{1}{21}+\frac{1}{36}.\) 

         Giản ước, làm gọn được :   \(S=(1+\frac{1}{2})+(\frac{1}{10}+\frac{1}{6}-\frac{1}{15})+(\frac{1}{12}+\frac{1}{36}).\) 

            \(\Leftrightarrow S=\frac{3}{2}+\frac{1}{5}+\frac{1}{9}=\frac{135+18+10}{90}=\frac{163}{90}.\)

24 tháng 3 2018

a)Ta có: \(\frac{3}{1.4}=\frac{4-1}{1.4}=1-\frac{1}{4}\)

\(\frac{3}{4.7}=\frac{7-4}{4.7}=\frac{1}{4}-\frac{1}{7}\)

... . . . .

\(\frac{3}{n\left(n+3\right)}=\frac{1}{n}-\frac{1}{n+3}\)

\(\Leftrightarrow S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+3}< 1^{\left(đpcm\right)}\)

b) Ta có: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

   \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)

Suy ra \(\frac{2}{5}< S\) (1)

Ta lại có: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)

Từ đó suy ra S < 8/9

Từ (1) và (2) suy ra đpcm

30 tháng 4 2018

a)\(=\frac{-3}{7}+\frac{15}{26}-\frac{2}{13}+\frac{3}{7}\)

\(=\left(\frac{-3}{7}+\frac{3}{7}\right)-\left(\frac{15}{26}+\frac{2}{13}\right)\)

\(=0-\frac{19}{26}\)

\(=-\frac{19}{26}\)

30 tháng 4 2018

c)\(=\frac{-11}{23}.\left(\frac{6}{7}+\frac{8}{7}\right)-\frac{1}{23}\)

\(=\frac{-11}{23}.2-\frac{1}{23}\)

\(=\frac{-22}{23}-\frac{1}{23}\)

\(=-1\)