Cho tam giác DEF,góc E =65 , F=75
a) so sánh canh trong tam giác DEF
b)kẻ DH vuông EF . so sánh HE và HF
c) Trên DH lấy I.So sánh IE và IF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét tam giác $DEH$ và $DFH$ có:
$DE=DF$ có $DEF$ cân tại $D$
$DH$ chung
$\widehat{DHE}=\widehat{DHF}=90^0$
$\Rightarrow \triangle DEH=\triangle DFH$ (ch-cgv)
$\Rightarrow EH=FH$
Xét tam giác $MHE$ và $MHF$ có:
$\widehat{MHE}=\widehat{MHF}=90^0$
$MH$ chung
$EH=FH$ (cmt)
$\Rightarrow \triangle MHE=\triangle MHF$ (c.g.c)
$\Rightarrow ME=MF$
a: ED<EF
=>HD<HF
b: Xét ΔDEI có DE=DI và góc D=60 độ
nên ΔDEI đều
c: Xét tứ giác FEBD có
A là trung điểm chung của FB và ED
=>FEBD là hbh
=>FE//BD
=>BD vuông góc DE
Khó vãi!!! Nghỉ ở nhà bây giờ ko nhớ tí kiến thức gì lun!!! Chắc phải mơ sách giáo khoa ra rùi tự nghiên cứu lại thui!!!
1: Xét ΔCBD có CA vừa là đường cao, vừa là trung tuyến
=>ΔCBD cân tại C
=>CA là phân giác của góc BCD
2: Xét ΔCEI vuông tại E và ΔCFI vuông tại F có
CI chung
góc ECI=góc FCI
=>ΔCEI=ΔCFI
=>CE=CF
Xét ΔCBD có CE/CD=CF/CB
nên EF//BD
3: IE=IF
IF<IB
=>IE<IB
c) xét tam giác vuông DEH và DHI
có góc DEH = IDH(gt)
cạnh DH chung
=> tam giác DEH=IDH (ch-gn)
d) gọi K là giao điểm của EI và DH
xét tam giác EDK và IDK
có ED=ID(EDH=IDH)
góc EDK = IDK(gt)
cạnh DK chung
=> tam giác EDK = IDK(cgc)
=>IK=IK(2 cạnh tương ứng) (1)
góc DKE=DKI(2 góc tương ứng)
ta có góc DKE+DKI=180(kề bù)
mà góc DKE=DKI
=> góc DKI=DKE=180:2
DKI=DKE=90 (2)
Từ (1)(2)=> DK là trung trực của EI
hay DH là trung trực của EI
Chúc bạn học tốt
a: Xét ΔDHE vuông tại H và ΔDHF vuông tại H có
DE=DF
DH chung
=>ΔDHE=ΔDHF
b: ΔDHE=ΔDHF
=>góc EDH=góc FDH=40/2=20 độ
c: góc FKD=góc FHD=90 độ
=>FHKD nội tiếp
=>góc KDH=góc KFH
a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
AH=AE
=>ΔAHD=ΔAED
b: DH=DE
DE<DC
=>DH<DC
c: Xét ΔAKC có
CH,KE là đường cao
CH căt KE tại D
=>D là trực tâm
=>AD vuông góc KC
a: \(\widehat{E}=35^0\)
Xét ΔDEF có \(\widehat{E}< \widehat{F}< \widehat{D}\)
nên FD<DE<EF
b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có
EH chung
\(\widehat{DEH}=\widehat{KEH}\)
Do đó: ΔEDH=ΔEKH
Suy ra: HD=HK
hay ΔHDK cân tại H
a: ˆE=350E^=350
Xét ΔDEF có ˆE<ˆF<ˆDE^<F^<D^
nên FD<DE<EF
b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có
EH chung
ˆDEH=ˆKEHDEH^=KEH^
Do đó: ΔEDH=ΔEKH
Suy ra: HD=HK