K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A C B D I

Hình nè

a/ Xét tam giác DCA và tam giác DCI có:

DC chung

Góc A=I=90 độ

Góc ICD=ACD(phân giác góc C)

=> Tam giác DCA=tam giác DCI(ch-gn)

=> AC=CI( cạnh tương ứng)

Sửa đề: CI\(\perp AB\)

a) Sửa đề: Chứng minh IA=IB

Xét ΔCIA vuông tại I và ΔCIB vuông tại I có

CA=CB(ΔCAB cân tại C)

CI chung

Do đó: ΔCIA=ΔCIB(cạnh huyền-cạnh góc vuông)

nên IA=IB(hai cạnh tương ứng)

Ta có: IA=IB(cmt)

mà IA+IB=AB=12cm(I nằm giữa A và B)

nên \(IA=IB=\dfrac{AB}{2}=\dfrac{12}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔCAI vuông tại I, ta được:

\(CI^2+AI^2=CA^2\)

\(\Leftrightarrow CI^2=CA^2-AI^2=10^2-6^2=64\)

hay CI=8(cm)

Vậy: CI=8cm

b) Bổ sung đề: IH\(\perp AC\) tại H

Xét ΔIHA vuông tại H và ΔIKB vuông tại K có

IA=IB(cmt)

\(\widehat{A}=\widehat{B}\)(hai góc ở đáy của ΔABC cân tại C)

Do đó: ΔIHA=ΔIKB(cạnh huyền-góc nhọn)

nên IH=IK(hai cạnh tương ứng)

c)

Sửa đề: Chứng minh HK//AB

Ta có: ΔIHA=ΔIKB(cmt)

nên HA=KB(hai cạnh tương ứng)

Ta có: CH+HA=CA(H nằm giữa C và A)

CK+KB=CB(K nằm giữa C và B)

mà HA=KB(cmt)

và CA=CB(ΔCAB cân tại C)

nên CH=CK

hay C nằm trên đường trung trực của HK(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: IH=IK(cmt)

nên I nằm trên đường trung trực của HK(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra CI là đường trung trực của HK

hay CI\(\perp\)HK

Ta có: CI\(\perp\)HK(cmt)

CI\(\perp\)AB(gt)

Do đó: HK//AB(Định lí 1 từ vuông góc tới song song)

cảm ơn bạn nha !!!! :>haha

6 tháng 5 2023

Ỏ sao lại vừa hỏi vừa trả lời zậylolang

6 tháng 5 2023

xl mình gửi lộn

10 tháng 3 2022

ko nhìn thấy j luôn :|
 

10 tháng 3 2022

Cho tam giác ABC có AB=AC kẻ AI vuông góc BC(I thuộc BC) a)chứng minh rằng IB=IC b)Cho AB=5cm,BC=6cm.Tính độ dài IA c)Kẻ IH vuông góc AB(H thuộc AB),IK vuông góc AC(K thuộc AC).Tam giác HIK là tam giác gì?Vì sao? d)Chứng minh HK song song BC

đk vậy
14 tháng 3 2020

a)+) tam giác ABC có CA=CB=10cm

=> tam giác ABC cân tại C

mà CI zuông góc AB ( AB cạnh huyền )

=> CI  là đường tuyến ưng zs cạnh AB cũng như là đường trung trực ứng zs cạnh AB

=> \(IC=\frac{1}{2}AB\left(1\right)\)

   \(AI=IB=\frac{1}{2}AB\left(2\right)\)

từ 1 zà 2 

=> \(IC=IB=\frac{1}{2}AB=\frac{1}{2}12=6cm\)

b) xét tam giác zuông AHI zà tam giác zuông IKB có

AI=IB ( cmt)

góc HAI= góc KBI ( do tam giác ABC cân cmt)

=> tam giác AHI=IKB

=>IH=Ik

c) có thể đề sai , HK ko song song zs AC đc nha

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=3^2+4^2=25\)

=>\(BC=\sqrt{25}=5\left(cm\right)\)

b: Xét ΔCAB vuông tại A và ΔCAI vuông tại A có

CA chung

AB=AI

Do đó: ΔCAB=ΔCAI

=>CB=CI

=>ΔCBI cân tại C

c: Ta có; ΔCAB=ΔCAI

=>\(\widehat{ACB}=\widehat{ACI}\)

Xét ΔCMA vuông tại M và ΔCNA vuông tại N có

CA chung

\(\widehat{MCA}=\widehat{NCA}\)

Do đó: ΔCMA=ΔCNA

d: Ta có: ΔCMA=ΔCNA

=>CM=CN

Xét ΔCIB có \(\dfrac{CM}{CI}=\dfrac{CN}{CB}\)

nên MN//IB