Cho hình chữ nhật ABCD, AD < AB, đường cao AH vuông góc BD tại H.
1) CM ΔHAD đồng dạng với ΔABD
2) Với AB = 20cm, AD = 15cm. Tính DB và AH
3) CM AH² = HD . HB
4) Trên tia đối DA lấy E sao cho DE < AD. Vẽ EM ⊥ BD tại M, EM cắt BD tại O. Vẽ AK ⊥ BE tại K, vẽ AF ⊥ OD tại F. CMR: H, F, K thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) OD cat BE tai P D la truc tam cua tam giac BEO
=> OP vuong goc BE
Ta co AH//ME( cung vuong BM)=>DH/DM=AD/DE
ta co AF//PE( cung vuong OP)=>DF/DP=DH/DM =>DH/DM=DF/DP
tam giac DHF dong dang tam giacDMP (cgc) =>DHF=DMP => FH//MP(1)
AH//OM(cung vuong BM)=> BH/BM=BA/BO
AK//OP(cung vuong BE)=>BK/BP=BA/BO
=>BH/BM=BK/BP =>HK//MP( theo dltl dao)(2)
tu(1)(2)=> F H K thang hang
1: Xét ΔHAD vuông tại H và ΔABD vuông tại A có
góc ADB chung
DO đó:ΔHAD\(\sim\)ΔABD
2: \(BD=\sqrt{20^2+15^2}=25\left(cm\right)\)
\(AH=\dfrac{AB\cdot AD}{BD}=12\left(cm\right)\)
3: Xét ΔABD vuông tại A có AH là đường cao
nên \(HA^2=HD\cdot HB\)
a) Xét \(\Delta HAD\) và \(\Delta ABD\) có:
\(\widehat{AHD}=\widehat{BAD}=90^0\)
\(\widehat{BDA}\) chung
suy ra: \(\Delta HAD~\Delta ABD\)
b) Áp dụng định lý Pytago ta có:
\(BD^2=AD^2+AB^2\)
\(\Leftrightarrow\)\(BD^2=15^2+20^2=625\)
\(\Leftrightarrow\)\(BD=\sqrt{625}=25\)cm
\(\Delta HAD~\Delta ABD\) \(\Rightarrow\)\(\frac{AH}{AB}=\frac{AD}{BD}\) \(\Rightarrow\) \(AH=\frac{AB.AD}{BD}\)
hay \(AH=\frac{20.15}{25}=12\)
P/s: tính AH áp dụng ngay hệ thức lượng cx đc
a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có
\(\widehat{ADB}\) chung
Do đó: ΔHAD\(\sim\)ΔABD
b: BD=25cm
AH=12cm
c: XétΔABD vuông tại A có AH là đường cao
nên \(AH^2=HD\cdot HB\)
d) OD cat BE tai P D la truc tam cua tam giac BEO
=> OP vuong goc BE
Ta co AH//ME( cung vuong BM)=>DH/DM=AD/DE
ta co AF//PE( cung vuong OP)=>DF/DP=DH/DM =>DH/DM=DF/DP
tam giac DHF dong dang tam giacDMP (cgc) =>DHF=DMP => FH//MP(1)
AH//OM(cung vuong BM)=> BH/BM=BA/BO
AK//OP(cung vuong BE)=>BK/BP=BA/BO
=>BH/BM=BK/BP =>HK//MP( theo dltl dao)(2)
tu(1)(2)=> F H K thang hang