cho tam giác abcco ab ,ce, bf cắt nhau tại o CMR 6 tam giác ofa,coe ,ocd ,obd,obf ,ofa có diện tích =nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: AM=1/2BC
nên AM=BM=CM
Xét ΔMAB có MA=MB
nên ΔMAB cân tại M
=>\(\widehat{MAB}=\widehat{B}\)
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
=>\(\widehat{MAC}=\widehat{C}\)
Xét ΔBAC có \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow\widehat{MAB}+\widehat{B}+\widehat{MAC}+\widehat{C}=180^0\)
\(\Leftrightarrow2\cdot\left(\widehat{MAB}+\widehat{MAC}\right)=180^0\)
=>\(\widehat{BAC}=90^0\)
hay ΔABC vuông tại A
Xét tam giác ABC, theo tính chất đường trung trực ta có:
OB = OE
OA = OC
Xét tam giác AOB và tam giác COE có:
AO = CO (cmt)
OB = OE (cmt)
AB = CE (gt)
=> tam giác AOB = Tam giác COA (c.c.c) (ĐPCM)
b)
Ta có: tam giác AOB = tam giác COE (ý a)
=> \(\widehat{ABO}=\widehat{CEO}\) (2 góc tương ứng)
Mà \(\widehat{CEO}=90^o\Rightarrow\widehat{ABO}=90^o\)
Lại có \(\widehat{AEO}=90^o\) (OC là đg trung trực)
Xét tam giác ABO và tam giác AEO có:
\(\widehat{ABO}=\widehat{AEO}=90^o\)
AO chung
BO = OE(cmt)
=> tam giác ABO = tam giác AEO (ch-cgv)
=> \(\widehat{BAO}=\widehat{EAO}\) (2 góc tương ứng)
hay \(\widehat{BAO}=\widehat{CAO}\)(do E \(\in\)AC)
Mà AO nằm giữa AB và AC
=> AO là tia phân giác của \(\widehat{BAC}\) (ĐPCM)
a) Ta có: \(\dfrac{AE}{AB}=\dfrac{2}{5}\)
\(\dfrac{AF}{AC}=\dfrac{4}{10}=\dfrac{2}{5}\)
Do đó: \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)\(\left(=\dfrac{2}{5}\right)\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{A}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
Suy ra: \(\dfrac{AE}{AB}=\dfrac{EF}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{2}{5}=\dfrac{EF}{12}\)
hay EF=4,8(cm)
Vậy: EF=4,8cm