Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: AM=1/2BC
nên AM=BM=CM
Xét ΔMAB có MA=MB
nên ΔMAB cân tại M
=>\(\widehat{MAB}=\widehat{B}\)
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
=>\(\widehat{MAC}=\widehat{C}\)
Xét ΔBAC có \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow\widehat{MAB}+\widehat{B}+\widehat{MAC}+\widehat{C}=180^0\)
\(\Leftrightarrow2\cdot\left(\widehat{MAB}+\widehat{MAC}\right)=180^0\)
=>\(\widehat{BAC}=90^0\)
hay ΔABC vuông tại A
Xét tam giác ABC, theo tính chất đường trung trực ta có:
OB = OE
OA = OC
Xét tam giác AOB và tam giác COE có:
AO = CO (cmt)
OB = OE (cmt)
AB = CE (gt)
=> tam giác AOB = Tam giác COA (c.c.c) (ĐPCM)
b)
Ta có: tam giác AOB = tam giác COE (ý a)
=> \(\widehat{ABO}=\widehat{CEO}\) (2 góc tương ứng)
Mà \(\widehat{CEO}=90^o\Rightarrow\widehat{ABO}=90^o\)
Lại có \(\widehat{AEO}=90^o\) (OC là đg trung trực)
Xét tam giác ABO và tam giác AEO có:
\(\widehat{ABO}=\widehat{AEO}=90^o\)
AO chung
BO = OE(cmt)
=> tam giác ABO = tam giác AEO (ch-cgv)
=> \(\widehat{BAO}=\widehat{EAO}\) (2 góc tương ứng)
hay \(\widehat{BAO}=\widehat{CAO}\)(do E \(\in\)AC)
Mà AO nằm giữa AB và AC
=> AO là tia phân giác của \(\widehat{BAC}\) (ĐPCM)
Nguồn nè chị: Câu 1 Cho góc nhọn xOy. Out la tia phan giac Lấy điểm A thuộc tia Ox, lấy điểm B thuộc tia Oy sao cho OA = OB. ABcat Out tai M a)CM:tam giac AOB=tam giacBO
Mấy bài này giống kiểu lớp 8 ý.
Bài 2:
a) Vì \(AM\) là đường trung tuyến của tam giác vuông \(ABC\left(gt\right)\)
=> \(AM=\frac{1}{2}BC\) (tính chất tam giác vuông).
=> \(AM=\frac{1}{2}.13\)
=> \(AM=6,5\left(cm\right).\)
Xét \(\Delta ABC\) vuông tại \(A\left(gt\right)\) có:
\(AB^2+AC^2=BC^2\) (định lí Py - ta - go).
=> \(5^2+AC^2=13^2\)
=> \(AC^2=13^2-5^2\)
=> \(AC^2=169-25\)
=> \(AC^2=144\)
=> \(AC=12cm\) (vì \(AC>0\)).
+ Vì \(BN\) là đường trung tuyến của tam giác vuông \(ABC\left(gt\right)\)
=> N là trung điểm của \(AC.\)
=> \(AN=CN=\frac{1}{2}AC\) (tính chất trung điểm).
=> \(AN=CN=\frac{1}{2}.12\)
=> \(AN=CN=6\left(cm\right).\)
Xét \(\Delta ABN\) vuông tại \(A\left(gt\right)\) có:
\(BN^2=AB^2+AN^2\) (định lí Py - ta - go).
=> \(BN^2=5^2+6^2\)
=> \(BN^2=25+36\)
=> \(BN^2=61\)
=> \(BN=\sqrt{61}\left(cm\right)\) (vì \(BN>0\)).
+ Vì \(CE\) là đường trung tuyến của tam giác vuông \(ABC\left(gt\right)\)
=> E là trung điểm của \(AB.\)
=> \(AE=BE=\frac{1}{2}AB\) (tính chất trung điểm).
=> \(AE=BE=\frac{1}{2}.5\)
=> \(AE=BE=2,5\left(cm\right).\)
Xét \(\Delta ACE\) vuông tại \(A\left(gt\right)\) có:
\(CE^2=AE^2+AC^2\) (định lí Py - ta - go).
=> \(CE^2=\left(2,5\right)^2+12^2\)
=> \(CE^2=6,25+144\)
=> \(CE^2=150,25\)
=> \(CE=\sqrt{150,25}\left(cm\right)\) (vì \(CE>0\)).
Chúc bạn học tốt!