Cho ∆ABC vuông tại A có AB = 1/2
AC, AD là tia phân giác của BAC ̂ (D ∈ BC).Gọi
E là trung điểm của AC
a) Chứng minh ∆BAD = ∆EAD
b) AB cắt DE tại K.Chứng minh rằng ∆DCK cân và B là trung điểm của đoạn thẳng AK.
c) AD cắt CK tại H.Chứng minh rằng AH ⟂ KC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a/ Ta có AB < BC (5cm < 6cm)
=> \(\widehat{ACB}< \widehat{A}\)(quan hệ giữa góc và cạnh đối diện trong tam giác)
Mà \(\widehat{ACB}=\widehat{ABC}\)(\(\Delta ABC\)cân tại A)
=> \(\widehat{ABC}< \widehat{A}\)
b/ \(\Delta ADB\)và \(\Delta ADC\)có: AB = AC (\(\Delta ABC\)cân tại A)
\(\widehat{BAD}=\widehat{DAC}\)(AD là tia phân giác \(\widehat{BAC}\))
Cạnh AD chung
=> \(\Delta ADB\)= \(\Delta ADC\)(c. g. c) (đpcm)
c/ Ta có \(\Delta ABC\)cân tại A
=> Đường cao AD cũng là đường trung tuyến của \(\Delta ABC\)
và G là giao điểm của hai đường trung tuyến AD và BE của \(\Delta ABC\)
=> CF là đường trung tuyến thứ ba của \(\Delta ABC\)
=> F là trung điểm AB (đpcm)
d/ Ta có G là giao điểm của ba đường trung tuyến AD, BE và CF của \(\Delta ABC\)
=> G là trọng tâm \(\Delta ABC\)
và D là trung điểm BC (vì AD là đường trung tuyến của \(\Delta ABC\))
=> \(BD=DC=\frac{BC}{2}=\frac{6}{2}=3\)(cm)
Áp dụng định lý Pitago vào \(\Delta ADB\)vuông tại D, ta có: AD = 4cm (tự tính)
=> \(AG=\frac{2}{3}AD=\frac{2}{3}.4=\frac{8}{3}\)(cm)
Áp dụng định lý Pitago vào \(\Delta ADC\)vuông tại D, ta có:
\(BG=\sqrt{BD^2+GD^2}\)
=> \(BG=\sqrt{3^2+\left(\frac{8}{3}\right)^2}\)
=> \(BG=\sqrt{9+\frac{64}{9}}\)
=> \(BG=\sqrt{\frac{145}{9}}\)
=> BG \(\approx\)4, 01 (cm)
a: Xet ΔADB và ΔADE có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
b: Xét ΔAHD vuông tại HvàΔAKD vuông tại K co
AD chung
góc HAD=góc KAD
=>ΔAHD=ΔAKD
=>DH=DK
=>D cách đều AB,AC
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: Xét ΔADF và ΔCDE có
DA=DC
\(\widehat{ADF}=\widehat{CDE}\)
DF=DE
Do đó: ΔADF=ΔCDE
Xét tứ giác AECF có
D là trung điểm của AC
D là trung điểm của FE
Do dó: AECF là hình bình hành
Suy ra: AF//EC
a: Xét ΔABD và ΔAED co
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
b: Xét ΔDBK và ΔDEC có
góc DBK=góc DEC
DB=DE
góc BDK=góc EDC
=>ΔDBK=ΔDEC
=>DK=DC
=>ΔKCD cân tại D
c: AB+BK=AK
AE+EC=AC
mà AB=AE: BK=EC
nên AK=AC
=>ΔAKC cân tại A
mà AH là phân giác
nen AH vuông góc KC