Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-.- LM XOG LỠ PẤM HỦY T~T
A)THEO ĐỊNH LÝ PYTAGO XÉT \(\Delta ABC\)VUÔNG TẠI A
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow10^2=6^2+AC^2\)
\(\Rightarrow100=36+AC^2\)
\(\Rightarrow AC^2=64\)
\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)
b) XÉT \(\Delta ABD\)VÀ \(\Delta EBD\)CÓ
\(\widehat{BAD}=\widehat{BED}=90^o\)
\(\widehat{B_1}=\widehat{B_2}\left(GT\right)\)
\(BD\)LÀ CẠNH CHUNG
=>\(\Delta ABD\)=\(\Delta EBD\)(CH-GN)
=>\(AB=EB\)
=>\(\Delta ABE\)CÂN TẠI B
C) TRONG\(\Delta ABE\)CÓ BM LÀ PHÂN GIÁC
=> BM VỪA LÀ PHÂN GIÁC VỪA LÀ TRUNG TUYẾN
=> AM=ME
VÌ AM=ME (CMT)=> CM LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta AEC\)
MÀ \(CG=2GM\)
=> G LÀ TRỌNG TÂM CỦA \(\Delta AEC\)
CÓ EN=NC (GT) =>AN LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA \(\Delta AEC\)
MÀ G LÀ TRỌNG TÂM CỦA \(\Delta AEC\)
=> G NẰM TRÊN ĐƯỜNG TRUNG TUYẾN AN
=> BA ĐIỂM A,G,N THẲNG HÀNG
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: ΔABD=ΔEBD
=>BA=BE và DA=DE
Xét ΔBAE có BA=BE
nên ΔBAE cân tại B
c: Ta có: DA=DE
DE<DC(ΔDEC vuông tại E nên DC là cạnh huyền)
=>DA<DC
d: BA=BE
=>B nằm trên đường trung trực của AE(1)
DA=DE
=>D nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD vuông góc với AE tại trung điểm của AE
=>BD\(\perp\)AE tại M và M là trung điểm của AE
CG=2GM nên \(GM=\dfrac{1}{2}CG\)
CG+GM=CM
=>\(\dfrac{1}{2}CG+CG=CM\)
=>\(CM=\dfrac{3}{2}CG\)
=>\(CG=\dfrac{2}{3}CM\)
Xét ΔEAC có
CM là đường trung tuyến
\(CG=\dfrac{2}{3}CM\)
Do đó: G là trọng tâm của ΔEAC
Xét ΔEAC có
G là trọng tâm
N là trung điểm của EC
Do đó: A,G,N thẳng hàng
a: BC=15cm
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
c: Ta có: DA=DE
mà DE<DC
nên DA<DC
d: Xét ΔBEI vuông tại E và ΔBAC vuông tại A có
BE=BA
\(\widehat{EBI}\) chung
DO đó: ΔBEI=ΔBAC
Suy ra: BI=BC
hay ΔBIC cân tại B