cho phân số a/b > 0 , chứng minh rằng a/b + b/a >_
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
Ta có: \(\left(a-b\right)^2\ge0\) (đúng)
\(\Rightarrow a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\)
Ta có: \(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}=2\)
"=" khi a=b. Nhưng a<b nên dấu bằng ko xảy ra,vậy ta có đpcm
Giải
Không giảm tính tổng quát, giả sử \(a\ge b\) suy ra a = b + m \(\left(m\ge0\right)\)
Ta có: \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)
\(=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}\)
\(=1+1=2\)
Vậy \(\frac{a}{b}+\frac{a}{b}\ge2\) (dấu = \(\Leftrightarrow\) m = 0\(\Leftrightarrow\) a = b)
Thiếu đề thì phải
Nhìn đề hình như là zầy phải k
\(\frac{a}{b}>0\)chứng minh \(\frac{a}{b}+\frac{b}{a}\ge\)số nào đó
Sửa để đi
ta có: \(\frac{a}{b}>0\Rightarrow\frac{b}{a}>0\Rightarrow\frac{a}{b}+\frac{b}{a}\)>_ 0