Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(a-b\right)^2\ge0\) (đúng)
\(\Rightarrow a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\)
Ta có: \(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}=2\)
"=" khi a=b. Nhưng a<b nên dấu bằng ko xảy ra,vậy ta có đpcm
Giải
Không giảm tính tổng quát, giả sử \(a\ge b\) suy ra a = b + m \(\left(m\ge0\right)\)
Ta có: \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)
\(=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}\)
\(=1+1=2\)
Vậy \(\frac{a}{b}+\frac{a}{b}\ge2\) (dấu = \(\Leftrightarrow\) m = 0\(\Leftrightarrow\) a = b)
Do a/b > 1 => a > b
=> a.n > b.n
=> a.n + a.b > b.n + a.b
=> a.(b + n) > b.(a + n)
=> a/b > a+n/b+n ( đpcm)
Thiếu đề thì phải
Nhìn đề hình như là zầy phải k
\(\frac{a}{b}>0\)chứng minh \(\frac{a}{b}+\frac{b}{a}\ge\)số nào đó
Sửa để đi
ta có: \(\frac{a}{b}>0\Rightarrow\frac{b}{a}>0\Rightarrow\frac{a}{b}+\frac{b}{a}\)>_ 0