giải pt
(x-1)(x-2)(x-3)(x-6) = 168x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow x^2-2x+12-8-x^2=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow-2x=-4\)
hay x=2(loại)
Vậy: \(S=\varnothing\)
b) Ta có: \(\left|2x+6\right|-x=3\)
\(\Leftrightarrow\left|2x+6\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy: S={-3}
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=15x^2\)
\(\Leftrightarrow\left(x^2-7x+6\right)\left(x^2-5x+6\right)-15x^2=0\) (*)
-Đặt \(t=x^2-5x+6\)
(*) \(\Leftrightarrow t\left(t-2x\right)-15x^2=0\)
\(\Leftrightarrow t^2-2xt-15x^2=0\)
\(\Leftrightarrow t^2-5xt+3xt-15x^2=0\)
\(\Leftrightarrow t\left(t-5x\right)+3x\left(t-5x\right)=0\)
\(\Leftrightarrow\left(t-5x\right)\left(t+3x\right)=0\)
\(\Leftrightarrow t-5x=0\) hay \(t+3x=0\)
\(\Leftrightarrow x^2-5x+6-5x=0\) hay \(x^2-5x+6+3x=0\)
\(\Leftrightarrow x^2-10x+6=0\) hay \(x^2-2x+6=0\)
\(\Leftrightarrow x^2-2.5x+25-19=0\) hay \(\left(x-1\right)^2+5=0\) (pt vô nghiệm)
\(\Leftrightarrow\left(x-5\right)^2-19=0\)
\(\Leftrightarrow\left(x-5-\sqrt{19}\right)\left(x-5+\sqrt{19}\right)=0\)
\(\Leftrightarrow x=5+\sqrt{19}\) hay \(x=5-\sqrt{19}\)
-Vậy \(S=\left\{5+\sqrt{19};5-\sqrt{19}\right\}\)
\(a,\dfrac{2x-1}{3}< \dfrac{x+6}{2}\)
\(\Leftrightarrow\dfrac{4x-2}{6}< \dfrac{3x+18}{6}\)
\(\Leftrightarrow4x-2< 3x+18\)
\(\Leftrightarrow4x-3x< 2+18\)
\(\Leftrightarrow x< 20\)
\(b,\dfrac{5\left(x-1\right)}{6}-1>\dfrac{2\left(x+1\right)}{3}\)
\(\Leftrightarrow\dfrac{5x-11}{6}>\dfrac{4x+4}{6}\)
\(\Leftrightarrow5x-11>4x+4\)
\(\Leftrightarrow5x-4x>11+4\)
\(\Leftrightarrow x>15\)
`1/(3-x)-1/(x+1)=x/(x-3)-(x-1)^2/(x^2-2x-3)(x ne -1,3)`
`<=>(-x-1)/(x^2-2x-3)-(x-3)/(x^2-2x-3)=(x^2+x)/(x^2-2x-3)-(x-1)^2/(x^2-2x-3)`
`<=>-x-1-x+3=x^2+x-x^2+2x-1`
`<=>-2x+2=3x-1`
`<=>5x=3`
`<=>x=3/5`
Vậy `S={3/5}`
`1/(x-2)-6/(x+3)=6/(6-x^2-x)(x ne 2,-3)`
`<=>(x+3)/(x^2+x-6)-(6x-12)/(x^2+x-6)+6/(x^2+x-6)=0`
`<=>x+3-6x+12+6=0`
`<=>-5x+21=0`
`<=>x=21/5`
Vậy `S={21/5}`
a) ĐKXĐ: \(x\notin\left\{3;-1\right\}\)
Ta có: \(\dfrac{1}{3-x}-\dfrac{1}{x+1}=\dfrac{x}{x-3}-\dfrac{\left(x-1\right)^2}{x^2-2x-3}\)
\(\Leftrightarrow\dfrac{-1\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}-\dfrac{x-3}{\left(x+1\right)\left(x-3\right)}=\dfrac{x\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}-\dfrac{x^2-2x+1}{\left(x-3\right)\left(x+1\right)}\)
Suy ra: \(-x-1-x+3=x^2+x-x^2+2x-1\)
\(\Leftrightarrow3x-1=-2x+2\)
\(\Leftrightarrow3x+2x=2+1\)
\(\Leftrightarrow5x=3\)
hay \(x=\dfrac{3}{5}\)(nhận)
Vậy: \(S=\left\{\dfrac{3}{5}\right\}\)
ĐKXĐ: \(-1\le x\le3\)
\(x^3+x+6=2\left(x+1\right)\sqrt{3+2x-x^2}\le\left(x+1\right)^2+3+2x-x^2\)
\(\Rightarrow x^3+x+6\le4x+4\)
\(\Rightarrow x^3-3x+2\le0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+2\right)\le0\)
Do \(x\ge-1\) nên (1) thỏa mãn khi và chỉ khi \(\left(x-1\right)^2\left(x+2\right)=0\)
\(\Leftrightarrow x=1\)
ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow\sqrt[3]{x+6}-2+\sqrt{x-1}-1=x^2-4\)
\(\Leftrightarrow\dfrac{x-2}{\sqrt[3]{\left(x+6\right)^2}+2\sqrt[3]{x+6}+4}+\dfrac{x-2}{\sqrt[]{x-1}+1}=\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\dfrac{1}{\sqrt[3]{\left(x+6\right)^2}+2\sqrt[3]{x+6}+4}+\dfrac{1}{\sqrt[]{x-1}+1}=x+2\left(1\right)\end{matrix}\right.\)
Xét (1), do \(x\ge1\Rightarrow\left\{{}\begin{matrix}x+2\ge3\\\dfrac{1}{\sqrt[3]{\left(x+6\right)^2}+2\sqrt[3]{x+6}+4}+\dfrac{1}{\sqrt[]{x-1}+1}< \dfrac{1}{4}+\dfrac{1}{1}< 3\\\end{matrix}\right.\)
\(\Rightarrow\left(1\right)\) vô nghiệm hay pt có nghiệm duy nhất \(x=2\)
\(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}+\dfrac{1}{\left(x-5\right)\left(x-6\right)}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-2}+\dfrac{1}{x-2}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-....+\dfrac{1}{x-5}-\dfrac{1}{x-6}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-6}=\dfrac{1}{10}\Leftrightarrow\dfrac{x-6-x+1}{\left(x-1\right)\left(x-6\right)}=\dfrac{1}{10}\)
\(\Leftrightarrow x^2-7x+56=0\Leftrightarrow x^2-2.\dfrac{7}{2}x+\dfrac{49}{4}+\dfrac{175}{4}=\left(x-\dfrac{7}{2}\right)^2+\dfrac{175}{4}>0\)
Vậy phương trình vô nghiệm
\(\dfrac{1}{x-3}=\dfrac{x^2-3x+5}{x^2-x-6}\)
Suy ra: \(x^2-3x+5=x+2\)
=>x2-4x+3=0
=>(x-3)*(x-1)=0
=>x=1(nhận) hoặc x=3(loại)
=> x.(-1-2-3-6) = 168x2
x.(-12) = 168x2
x2 : x = -12 : 168
x = 1/14