a) Cho a\(\ge3\)Tìm min \(M=a+\frac{1}{a}\)
b) Cho a\(\ge2\)Tìm min \(N=a+\frac{1}{a^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái phần CMR: \(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2\le3\left(b-2\right)\) phải là giả thiết chứ nhỉ ??
ĐỀ GỐC BÀI NÀY LÀ ĐỀ CỦA CHUYÊN HƯNG YÊN NHÉ, THẦY CẬU RA LẠI THÔI !!!!!
DO: \(a\ge1;b\ge2;c\ge3\Rightarrow a-1;b-2;c-3\ge0\)
ĐẶT: \(a-1=x;b-2=y;c-3=z\)
=> \(gt\Leftrightarrow\hept{\begin{cases}x;y;z\ge0\\x^2+y^2+z^2\le3y\end{cases}}\)
=> \(a=x+1;b=y+2;c=z+3\)
=> \(P=\frac{1}{\left(x+1\right)^2}+\frac{4}{\left(y+2\right)^2}+\frac{8}{\left(z+3\right)^2}\)
TA ÁP DỤNG 2 BĐT SAU: \(\hept{\begin{cases}\left(x+1\right)^2\le2\left(x^2+1\right)\\\left(z+3\right)^2\le4\left(z^2+3\right)\end{cases}}\)
=> \(P\ge\frac{1}{2\left(x^2+1\right)}+\frac{8}{4\left(z^2+3\right)}+\frac{4}{\left(y+2\right)^2}\)
=> \(P\ge\frac{1}{2\left(x^2+1\right)}+\frac{4}{2\left(z^2+3\right)}+\frac{4}{\left(y+2\right)^2}\)
=> \(P\ge\frac{\left(1+2\right)^2}{2\left(x^2+z^2\right)+8}+\frac{4}{\left(y+2\right)^2}\) (BĐT CAUCHY - SCHWARZ)
=> \(P\ge\frac{9}{2\left(x^2+z^2\right)+8}+\frac{4}{\left(y+2\right)^2}\)
MÀ: \(x^2+z^2\le3y-y^2\) (gt)
=> \(P\ge\frac{9}{2\left(3y-y^2\right)}+\frac{4}{\left(y+2\right)^2}=\frac{9}{6y-2y^2}+\frac{4}{\left(y+2\right)^2}\)
TA SẼ CHỨNG MINH \(\frac{9}{6y-2y^2+8}+\frac{4}{\left(y+2\right)^2}\ge1\)
<=> \(\left(y-2\right)^2\left(2y^2+10y+9\right)\ge0\) (*)
(CHỖ NÀY CẬU QUY ĐỒNG MẪU SỐ, RÚT GỌN RỒI PHÂN TÍCH NHÂN TỬ SẼ RA ĐƯỢC NHƯ THẾ NÀY, MÌNH LÀM TẮT NHA)
DO: \(\hept{\begin{cases}\left(y-2\right)^2\ge0\forall y\\2y^2+10y+9\ge9>0\left(y\ge0\right)\end{cases}}\)
VẬY BĐT (*) LUÔN ĐÚNG !!!!!!
=> \(P\ge1\)
DẤU "=" XẢY RA <=> \(x=z=1;y=2\)
<=> \(a=2;b=4;c=4\)
Em làm thử nhé!
Bài 1: \(A=\left[\frac{a^2}{b-1}+4\left(b-1\right)\right]+\left[\frac{b^2}{a-1}+4\left(a-1\right)\right]-4\left(a+b\right)+8\)
Cauchy vào là ra rồi ạ;)
Bài 2: Em chịu
2) Có: \(\sqrt{ab}\le\frac{a+b}{2}=1\); \(\sqrt{a}+\sqrt{b}=\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}\le\sqrt{2\left(a+b\right)}=2\)
\(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}=\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}\ge\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3=\frac{a^2}{\sqrt{a}}+\frac{b^2}{\sqrt{b}}\)
\(\ge\frac{\left(a+b\right)^2}{\sqrt{a}+\sqrt{b}}\ge=\frac{2^2}{2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=1\)
Ta có: \(S^2=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+2\frac{a\sqrt{b}}{\sqrt{c}}+2\frac{b\sqrt{c}}{\sqrt{a}}+2\frac{c\sqrt{a}}{\sqrt{b}}\)
Áp dụng BĐT Cosi cho 3 số dương ta được
\(\hept{\begin{cases}\frac{a^2}{b}+\frac{a\sqrt{b}}{\sqrt{c}}+\frac{a\sqrt{b}}{\sqrt{c}}+c\ge4a\left(1\right)\\\frac{b^2}{c}+\frac{b\sqrt{c}}{\sqrt{a}}+\frac{b\sqrt{c}}{a}+a\ge4b\left(2\right)\\\frac{c^2}{a}+\frac{c\sqrt{a}}{\sqrt{b}}+\frac{c\sqrt{a}}{\sqrt{b}}+b\ge4c\left(3\right)\end{cases}}\)
Cộng theo từng vế của (1) (2) (3)
=> \(S^2\ge3\left(a+b+c\right)\ge9\Rightarrow A\ge3\)
=> MinS=3 đạt được khi a=b=c=1
a) giả sử \(x\ge y\ge3\)
P(x)=x+1/x
P(y)=y+1/y
P(x)-p(y)=(x+1/x)-(y+1/y)=(x-y)+(1/x-1/y)=A
\(x\ge y\ge3\Rightarrow\frac{1}{x}\le\frac{1}{y}\hept{\begin{cases}x-y\le0\\\frac{1}{x}-\frac{1}{y}\le0\end{cases}\Rightarrow A\le0}\)
Kết luận a cành lớn thì P(a) càng lớn
=> Pmin=P(3)=3+1/3=10/3
Ok ta cần chứng minh A>=0
\(A=\left(x-y\right)+\left(\frac{1}{x}-\frac{1}{y}\right)=\left(x-y\right)+\frac{\left(y-x\right)}{xy}=\left(x-y\right)-\frac{\left(x-y\right)}{xy}\\ \)
\(A=\left(x-y\right)\left[1-\frac{1}{xy}\right]\)
\(x\ge y\ge3\Rightarrow\hept{\begin{cases}x-y\ge0\\xy\ge9\\\frac{1}{xy}\le\frac{1}{9}< 1\Rightarrow1-\frac{1}{xy}>0\end{cases}}\Rightarrow A\ge0\)
\(B=\frac{a+b}{ab}+\frac{2}{a+b}=\frac{a+b}{2ab}+\frac{a+b}{2ab}+\frac{2}{a+b}\)
\(B\ge\frac{2\sqrt{ab}}{2ab}+2\sqrt{\frac{2\left(a+b\right)}{2ab\left(a+b\right)}}=3\)
\(B_{min}=3\) khi \(a=b=1\)
Câu b thì đề chắc phải cho a;b;c là 3 cạnh của 1 tam giác để đảm bảo các mẫu thức dương chứ?
Đặt \(\left\{{}\begin{matrix}b+c-a=x\\a+c-b=y\\a+b-c=z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{x+z}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)
\(T=\frac{2\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{2y}+\frac{8\left(x+y\right)}{z}\)
\(T=\frac{2y}{x}+\frac{2z}{x}+\frac{9x}{2y}+\frac{9z}{2y}+\frac{8x}{z}+\frac{8y}{z}\)
\(T=\frac{2y}{x}+\frac{9x}{2y}+\frac{2z}{x}+\frac{8x}{z}+\frac{8y}{z}+\frac{9z}{2y}\)
\(T\ge2\sqrt{\frac{18xy}{2xy}}+2\sqrt{\frac{16xz}{xz}}+2\sqrt{\frac{72yz}{2yz}}=26\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}3x=2y\\z=2x\\4y=3z\end{matrix}\right.\)
1) \(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt{\frac{a}{16}.\frac{1}{a}}+\frac{15.4}{16}=\frac{17}{4}\)
Dấu "=" xảy ra <=> a = 4
Vậy min A = 17/4 tại a = 4
2) \(B=3x+\frac{16}{x^3}=x+x+x+\frac{16}{x^3}\ge4\sqrt[4]{x.x.x.\frac{16}{x^3}}=8\)
Dấu "=" xảy ra <=> x = 2
Vậy min B = 8 tại x = 2
3) 0<x<2 tìm min \(C=\frac{9x}{2-x}+\frac{2}{x}\)
Ta có: \(C=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x}{2-x}+\frac{2-x}{x}+1\ge2\sqrt{\frac{9x}{2-x}.\frac{2-x}{x}}+1=7\)
Dấu "=" xảy ra <=> x = 1/2 thỏa mãn
Vậy min C = 7 đạt tại x = 1/2
Ta có : a>0 \(\Rightarrow a+1>1\)
\(\Rightarrow\frac{a^2}{a+1}< \frac{a^2}{1}=a^2\)
Ta có :b>0\(\Rightarrow b+1>1\)
\(\Rightarrow\frac{b^2}{b+1}< \frac{b^2}{1}=b^2\)
\(\Rightarrow A< a^2+b^2\)
vì a;b>0\(\Rightarrow A=\frac{a^2}{a+1}+\frac{b^2}{b+1}>=\frac{\left(a+b\right)^2}{a+1+b+1}=\frac{\left(a+b\right)^2}{a+b+2}\)(bđt cauchy schawarz dạng engel)
dấu = xảy ra khi \(\frac{a}{a+1}=\frac{b}{b+1}\)
\(\frac{\left(a+b\right)^2}{a+b+2}=\frac{\left(a+b\right)^2-4+4}{a+b+2}=\frac{\left(a+b-2\right)\left(a+b+2\right)+4}{a+b+2}=a+b-2+\frac{4}{a+b+2}\)
\(=a+b+2+\frac{4}{a+b+2}-4>=2\sqrt{\frac{\left(a+b+2\right)4}{a+b+2}}-4=2\cdot2-4=4-4=0\)(bđt cosi)
dáu = xảy ra khi \(a+b+2=\frac{4}{a+b+2}\Rightarrow\left(a+b+2\right)^2=4\Rightarrow a+b+2=2\Rightarrow a+b=0\)\(\Rightarrow A>=\frac{\left(a+b\right)^2}{a+b+2}>=0\Rightarrow\)min A là 0
vậy min A là 0 khi \(\frac{a}{a+1}=\frac{b}{b+1};a+b=0\)
Mới thấy câu này nè.
794373 nhé bạn
a) Cách 1:
\(M=\frac{a}{9}+\frac{1}{a}+\frac{8a}{9}\ge2\sqrt{\frac{a}{9}.\frac{1}{a}}+\frac{8.3}{9}=\frac{10}{3}\)
Cách 2: \(M=a+\frac{9}{a}-\frac{8}{a}\ge2\sqrt{a.\frac{9}{a}}-\frac{8}{3}=\frac{10}{3}\)
b) Cách 1: \(N=a+\frac{1}{a^2}+\frac{1}{4}-\frac{1}{4}\ge a+\frac{1}{a}-\frac{1}{4}\)
Đến đây trở về dạng quen thuộc.
Cách 2: \(N=\frac{a}{8}+\frac{a}{8}+\frac{1}{a^2}+\frac{3a}{4}\ge3\sqrt[3]{\frac{a}{8}.\frac{a}{8}.\frac{1}{a^2}}+\frac{3.2}{4}=\frac{9}{4}\)