Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức AM-GM ta có :
\(B=\frac{12}{x-1}+\frac{x-1+1}{3}=\frac{12}{x-1}+\frac{x-1}{3}+\frac{1}{3}\ge2\sqrt{\frac{12}{x-1}\cdot\frac{x-1}{3}}+\frac{1}{3}=4+\frac{1}{3}=\frac{13}{3}\)
Dấu "=" xảy ra <=> \(\frac{12}{x-1}=\frac{x-1}{3}\Rightarrow x=7\left(x\ge1\right)\). Vậy MinB = 13/3
\(M=\dfrac{a^2+1}{a}\Rightarrow M-\dfrac{10}{3}=\dfrac{a^2+1}{a}-\dfrac{10}{3}=\dfrac{3a^2-10a+3}{3a}=\dfrac{\left(3a-1\right)\left(a-3\right)}{3a}\)\(a\ge3\Rightarrow\left\{{}\begin{matrix}3a>0\\3a-1>0\\a-3\ge0\end{matrix}\right.\) \(\Rightarrow\dfrac{\left(3a-1\right)\left(a-3\right)}{3a}\ge0\)
\(\Rightarrow M-\dfrac{10}{3}\ge0\Rightarrow M\ge\dfrac{10}{3}\)
MIn M =10/3 khi x=3
1) \(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt{\frac{a}{16}.\frac{1}{a}}+\frac{15.4}{16}=\frac{17}{4}\)
Dấu "=" xảy ra <=> a = 4
Vậy min A = 17/4 tại a = 4
2) \(B=3x+\frac{16}{x^3}=x+x+x+\frac{16}{x^3}\ge4\sqrt[4]{x.x.x.\frac{16}{x^3}}=8\)
Dấu "=" xảy ra <=> x = 2
Vậy min B = 8 tại x = 2
3) 0<x<2 tìm min \(C=\frac{9x}{2-x}+\frac{2}{x}\)
Ta có: \(C=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x}{2-x}+\frac{2-x}{x}+1\ge2\sqrt{\frac{9x}{2-x}.\frac{2-x}{x}}+1=7\)
Dấu "=" xảy ra <=> x = 1/2 thỏa mãn
Vậy min C = 7 đạt tại x = 1/2
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge6\)
=> \(-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le-6\)
=> \(-\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le-6.\frac{3}{2}\)
=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
=> \(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\)
=> \(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge6\)(1)
Dễ thấy \(\frac{a}{b}+\frac{b}{a}\ge2\)(với a,b > 0)
=> (1) đúng
=> BĐTđược chứng minh
b)Đặt \(A=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(a,b,c>0\right)\).
\(A=4\left(a+b+c\right)-3\left(a+b+c\right)+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).
\(A=\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)-3\left(a+b+c\right)\).
Vì \(a>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(4a+\frac{1}{a}\ge2\sqrt{4.a.\frac{1}{a}}=4\left(1\right)\).
Dấu bằng xảy ra \(\Leftrightarrow4a=\frac{1}{a}\Leftrightarrow a=\frac{1}{2}\).
Chứng minh tương tự, ta được:
\(4b+\frac{1}{b}\ge4\left(b>0\right)\left(2\right)\).
Dấu bằng xảy ra \(\Leftrightarrow b=\frac{1}{2}\).
Chứng minh tương tự, ta được:
\(4c+\frac{1}{c}\ge4\left(c>0\right)\left(3\right)\).
Dấu bằng xảy ra \(\Leftrightarrow c=\frac{1}{2}\).
Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:
\(\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)\ge4+4+4=12\).
\(\Leftrightarrow\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)-3\left(a+b+c\right)\ge\)\(12-3\left(a+b+c\right)\).
\(\Leftrightarrow A\ge12-3\left(a+b+c\right)\left(4\right)\).
Mặt khác, ta có: \(a+b+c\le\frac{3}{2}\).
\(\Leftrightarrow3\left(a+b+c\right)\le\frac{9}{2}\).
\(\Rightarrow-3\left(a+b+c\right)\ge-\frac{9}{2}\).
\(\Leftrightarrow12-3\left(a+b+c\right)\ge\frac{15}{2}\left(5\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a+b+c=\frac{3}{2}\).
Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:
\(A\ge\frac{15}{2}\).
Dấu bằng xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\).
Vậy với \(a,b,c>0\)và \(a+b+c\le\frac{3}{2}\)thì \(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{15}{2}\).
\(S=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\)
\(=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+4\)
Dễ có:\(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)
\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\ge\frac{2}{\frac{\left(a+b\right)^2}{4}}=\frac{8}{\left(a+b\right)^2}=8\)
Khi đó:\(S\ge\frac{1}{2}+8+4=\frac{25}{2}\)
Vậy ta có đpcm
Ta có: \(a^2+b^2+c^2\ge3abc\)
Suy ra: \(1\ge abc\)
Mà \(a+b+c\ge3\sqrt{abc}\ge3\)
Suy ra: \(2\left(a+b+c\right)\ge6\)
Suy ra: \(VT+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge VT+\frac{1}{a+b+c}\ge VT+\frac{1}{3}=6+\frac{1}{3}=6\frac{1}{3}\)
Vậy .........
UCT -->Chứng minh \(2a+\frac{1}{a}\ge\frac{a^2}{2}+\frac{5}{2}\) với \(0\le a^2;b^2;c^2\le3\)
Tương tự + lại là xog
a) giả sử \(x\ge y\ge3\)
P(x)=x+1/x
P(y)=y+1/y
P(x)-p(y)=(x+1/x)-(y+1/y)=(x-y)+(1/x-1/y)=A
\(x\ge y\ge3\Rightarrow\frac{1}{x}\le\frac{1}{y}\hept{\begin{cases}x-y\le0\\\frac{1}{x}-\frac{1}{y}\le0\end{cases}\Rightarrow A\le0}\)
Kết luận a cành lớn thì P(a) càng lớn
=> Pmin=P(3)=3+1/3=10/3
Ok ta cần chứng minh A>=0
\(A=\left(x-y\right)+\left(\frac{1}{x}-\frac{1}{y}\right)=\left(x-y\right)+\frac{\left(y-x\right)}{xy}=\left(x-y\right)-\frac{\left(x-y\right)}{xy}\\ \)
\(A=\left(x-y\right)\left[1-\frac{1}{xy}\right]\)
\(x\ge y\ge3\Rightarrow\hept{\begin{cases}x-y\ge0\\xy\ge9\\\frac{1}{xy}\le\frac{1}{9}< 1\Rightarrow1-\frac{1}{xy}>0\end{cases}}\Rightarrow A\ge0\)