Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức AM-GM ta có :
\(B=\frac{12}{x-1}+\frac{x-1+1}{3}=\frac{12}{x-1}+\frac{x-1}{3}+\frac{1}{3}\ge2\sqrt{\frac{12}{x-1}\cdot\frac{x-1}{3}}+\frac{1}{3}=4+\frac{1}{3}=\frac{13}{3}\)
Dấu "=" xảy ra <=> \(\frac{12}{x-1}=\frac{x-1}{3}\Rightarrow x=7\left(x\ge1\right)\). Vậy MinB = 13/3
\(M=\dfrac{a^2+1}{a}\Rightarrow M-\dfrac{10}{3}=\dfrac{a^2+1}{a}-\dfrac{10}{3}=\dfrac{3a^2-10a+3}{3a}=\dfrac{\left(3a-1\right)\left(a-3\right)}{3a}\)\(a\ge3\Rightarrow\left\{{}\begin{matrix}3a>0\\3a-1>0\\a-3\ge0\end{matrix}\right.\) \(\Rightarrow\dfrac{\left(3a-1\right)\left(a-3\right)}{3a}\ge0\)
\(\Rightarrow M-\dfrac{10}{3}\ge0\Rightarrow M\ge\dfrac{10}{3}\)
MIn M =10/3 khi x=3
Gọi \(A=\frac{a}{\left(b+3\right)^3}+\frac{b}{\left(c+a\right)^3}+\frac{c}{\left(a+b\right)^3}\)
Và: \(B=a+b+c\)
Áp dụng BĐT Holder ta có:
\(A.B.B\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\ge\left(\frac{3}{2}\right)^3\)
\(\Rightarrow A\ge\frac{27}{8\left(a+b+c\right)^2}\left(đpcm\right)\)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c\)
1) \(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt{\frac{a}{16}.\frac{1}{a}}+\frac{15.4}{16}=\frac{17}{4}\)
Dấu "=" xảy ra <=> a = 4
Vậy min A = 17/4 tại a = 4
2) \(B=3x+\frac{16}{x^3}=x+x+x+\frac{16}{x^3}\ge4\sqrt[4]{x.x.x.\frac{16}{x^3}}=8\)
Dấu "=" xảy ra <=> x = 2
Vậy min B = 8 tại x = 2
3) 0<x<2 tìm min \(C=\frac{9x}{2-x}+\frac{2}{x}\)
Ta có: \(C=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x}{2-x}+\frac{2-x}{x}+1\ge2\sqrt{\frac{9x}{2-x}.\frac{2-x}{x}}+1=7\)
Dấu "=" xảy ra <=> x = 1/2 thỏa mãn
Vậy min C = 7 đạt tại x = 1/2
Ta có : a>0 \(\Rightarrow a+1>1\)
\(\Rightarrow\frac{a^2}{a+1}< \frac{a^2}{1}=a^2\)
Ta có :b>0\(\Rightarrow b+1>1\)
\(\Rightarrow\frac{b^2}{b+1}< \frac{b^2}{1}=b^2\)
\(\Rightarrow A< a^2+b^2\)
vì a;b>0\(\Rightarrow A=\frac{a^2}{a+1}+\frac{b^2}{b+1}>=\frac{\left(a+b\right)^2}{a+1+b+1}=\frac{\left(a+b\right)^2}{a+b+2}\)(bđt cauchy schawarz dạng engel)
dấu = xảy ra khi \(\frac{a}{a+1}=\frac{b}{b+1}\)
\(\frac{\left(a+b\right)^2}{a+b+2}=\frac{\left(a+b\right)^2-4+4}{a+b+2}=\frac{\left(a+b-2\right)\left(a+b+2\right)+4}{a+b+2}=a+b-2+\frac{4}{a+b+2}\)
\(=a+b+2+\frac{4}{a+b+2}-4>=2\sqrt{\frac{\left(a+b+2\right)4}{a+b+2}}-4=2\cdot2-4=4-4=0\)(bđt cosi)
dáu = xảy ra khi \(a+b+2=\frac{4}{a+b+2}\Rightarrow\left(a+b+2\right)^2=4\Rightarrow a+b+2=2\Rightarrow a+b=0\)\(\Rightarrow A>=\frac{\left(a+b\right)^2}{a+b+2}>=0\Rightarrow\)min A là 0
vậy min A là 0 khi \(\frac{a}{a+1}=\frac{b}{b+1};a+b=0\)
https://olm.vn/hoi-dap/detail/258469425824.html . Bạn tham khảo link này
Áp dụng BĐT Cauchy cho 2 số không âm ta có :
\(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt[2]{\frac{a}{16}.\frac{1}{a}}+\frac{60}{16}=\frac{17}{4}\)
Đẳng thức xảy ra khi và chỉ khi \(a=4\)
Vậy \(Min_A=\frac{17}{4}\)khi \(a=4\)
a, Áp dụng \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
Áp dụng \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x,y>0\)
Ta có: \(A=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2\ge\frac{\left(2+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(2+\frac{4}{a+b}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
b, Áp dụng \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
Áp dụng \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\forall x,y,z>0\)
Ta có: \(B=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2+\left(1+\frac{1}{c}\right)^2\ge\frac{\left(3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\ge\frac{\left(3+\frac{9}{a+b+c}\right)^2}{3}\ge\frac{\left(3+6\right)^2}{3}=27\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)
* Các BĐT phụ bạn tự CM nha! Chúc bạn học tốt
a) giả sử \(x\ge y\ge3\)
P(x)=x+1/x
P(y)=y+1/y
P(x)-p(y)=(x+1/x)-(y+1/y)=(x-y)+(1/x-1/y)=A
\(x\ge y\ge3\Rightarrow\frac{1}{x}\le\frac{1}{y}\hept{\begin{cases}x-y\le0\\\frac{1}{x}-\frac{1}{y}\le0\end{cases}\Rightarrow A\le0}\)
Kết luận a cành lớn thì P(a) càng lớn
=> Pmin=P(3)=3+1/3=10/3
Ok ta cần chứng minh A>=0
\(A=\left(x-y\right)+\left(\frac{1}{x}-\frac{1}{y}\right)=\left(x-y\right)+\frac{\left(y-x\right)}{xy}=\left(x-y\right)-\frac{\left(x-y\right)}{xy}\\ \)
\(A=\left(x-y\right)\left[1-\frac{1}{xy}\right]\)
\(x\ge y\ge3\Rightarrow\hept{\begin{cases}x-y\ge0\\xy\ge9\\\frac{1}{xy}\le\frac{1}{9}< 1\Rightarrow1-\frac{1}{xy}>0\end{cases}}\Rightarrow A\ge0\)