cíu tui, tui tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 3/5=9/15
7/3=35/15
b: 9/10=36/40
5/4=50/40
c: 2/7=8/28
5/4=35/28
d: 8/9=16/18
11/6=33/18
e: 6/5=48/40
13/8=65/40
g: 4/5=8/10
3/2=15/10
h: 5/12=10/24
7/8=21/24
i: 11/4=33/12
13/6=26/12
Bài 2:
\(a,\dfrac{2\times6\times13}{5\times13\times6}=\dfrac{2}{5}\\ b,\dfrac{8\times11\times13}{11\times13\times16}=\dfrac{8}{16}=\dfrac{8}{8\times2}=\dfrac{1}{2}\\ c,\dfrac{5\times18\times12}{15\times24\times16}=\dfrac{5\times3\times3\times6\times3\times4}{3\times5\times4\times6\times4\times4}=\dfrac{3\times3}{4\times4}=\dfrac{9}{16}\\ d,\dfrac{15\times8\times4}{32\times3\times5}=\dfrac{5\times3\times8\times4}{4\times8\times3\times5}=\dfrac{1}{1}=1\)
Bài 1:
\(a,\dfrac{8}{12}=\dfrac{8:4}{12:4}=\dfrac{2}{3}\\ \dfrac{20}{48}=\dfrac{20:4}{48:4}=\dfrac{5}{12}\\ \dfrac{74}{100}=\dfrac{74:2}{100:2}=\dfrac{37}{50}\\ \dfrac{18}{21}=\dfrac{18:3}{21:3}=\dfrac{6}{7}\\ \dfrac{40}{54}=\dfrac{40:2}{54:2}=\dfrac{20}{27}\\ \dfrac{30}{45}=\dfrac{30:15}{45:3}=\dfrac{2}{3}\\ b,\dfrac{18}{24}=\dfrac{18:6}{24:6}=\dfrac{3}{4}\\ \dfrac{49}{28}=\dfrac{49:7}{28:7}=\dfrac{7}{4}\\ \dfrac{15}{35}=\dfrac{15:5}{35:5}=\dfrac{3}{7}\\ \dfrac{28}{40}=\dfrac{28:4}{40:4}=\dfrac{7}{10}\\ \dfrac{36}{27}=\dfrac{36:9}{27:9}=\dfrac{4}{3}\\ \dfrac{56}{49}=\dfrac{56:7}{49:7}=\dfrac{8}{7}\)
\(c,\dfrac{85}{51}=\dfrac{85:17}{51:17}=\dfrac{5}{3}\\ \dfrac{1515}{2323}=\dfrac{1515:101}{2323:101}=\dfrac{15}{23}\\ \dfrac{39}{26}=\dfrac{39:13}{26:13}=\dfrac{3}{2}\\ \dfrac{323232}{515151}=\dfrac{323232:10101}{515151:10101}=\dfrac{32}{51}\)
1: Xét ΔMNP vuông tại M có MH là đường cao
nên MH^2=HN*HP; MN^2=NH*NP; PM^2=PH*PN
=>MH=căn 3,6*6,4=4,8cm; MN=căn 3,6*10=6cm; PM=căn 6,4*10=8cm
2: MK=8/2=4cm
Xét ΔMNK vuông tại M có tan MNK=MK/MN=4/6=2/3
nên \(\widehat{MNK}\simeq33^041'\)
3: ΔMNK vuông tại M có MF là đường cao
nên NF*NK=NM^2
ΔMNP vuông tại M có MH là đường cao
nên NH*NP=NM^2
=>NF*NK=NH*NP
a) \(\sqrt[]{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
\(\Leftrightarrow\sqrt[]{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+9}=-\left(x^2+2x+1\right)+5\)
\(\Leftrightarrow\sqrt[]{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}=-\left(x+1\right)^2+5\left(1\right)\)
Ta có :
\(\left\{{}\begin{matrix}\sqrt[]{3\left(x+1\right)^2+4}\ge2,\forall x\in R\\\sqrt[]{5\left(x+1\right)^2+9}\ge3,\forall x\in R\end{matrix}\right.\)
\(\Rightarrow VT=\sqrt[]{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge5,\forall x\in R\)
\(VP=-\left(x+1\right)^2+5\le5,\forall x\in R\)
Dấu "=" xảy ra thì \(VT=VP=5\)
\(\left(1\right)\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy nghiệm của phương trình đã cho là \(x=-1\)
a: ΔOHB cân tại O
mà OI là đường trung tuyến
nên OI\(\perp\)HB
I là trung điểm của HB
=>\(IH=IB=\dfrac{HB}{2}=\dfrac{8}{2}=4\left(cm\right)\)
ΔOIB vuông tại I
=>\(OB^2=OI^2+IB^2\)
=>\(OB^2=3^2+4^2=25\)
=>OB=5(cm)
=>R=5(cm)
Xét tứ giác MAOI có
\(\widehat{MAO}+\widehat{MIO}=90^0+90^0=180^0\)
=>MAOI là tứ giác nội tiếp đường tròn đường kính MO
Tâm là trung điểm của MO
b: Xét (O) có
ΔAHB nội tiếp
AB là đường kính
Do đó; ΔAHB vuông tại H
=>AH\(\perp\)HB tại H
=>AH\(\perp\)MB tại H
Xét ΔMAB vuông tại A có AH là đường cao
nên \(MA^2=MH\cdot MB\)
c: Xét (O) có
MA,MK là tiếp tuyến
Do đó: MA=MK
mà OA=OK
nên MO là đường trung trực của AK
\(MA^2=MH\cdot MB\)
MA=MK
Do đó: \(MK^2=MH\cdot MB\)
=>\(\dfrac{MK}{MH}=\dfrac{MB}{MK}\)
Xét ΔMKB và ΔMHK có
\(\dfrac{MK}{MH}=\dfrac{MB}{MK}\)
\(\widehat{KMB}\) chung
Do đó: ΔMKB đồng dạng với ΔMHK
=>\(\widehat{MBK}=\widehat{MHK}\)
1.There is a small pond in front of Lam's house.
2.You can play games in the afternoon but you must do your homework in the evening.
3.Does Lan walk or ride a bike to school?
4.When it is hot,We often go swimming.
5.What is there in front of your house?
6.Where is your father sitting now?
7.My class starts at seven in the morning.
8.I do not often go swimming with my friends.