K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2019

a/ \(\tan^2x-\cot^2\left(x-\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow\frac{1}{\cos^2x}-1-\frac{1}{\sin^2\left(x-\frac{\pi}{4}\right)}+1=0\)

\(\Leftrightarrow\frac{1}{\cos^2x}-\frac{1}{\left(\sin x.\cos\frac{\pi}{4}-\cos x.\sin\frac{\pi}{4}\right)^2}=0\)

\(\Leftrightarrow\frac{1}{\cos^2x}-\frac{1}{\left(\frac{\sqrt{2}}{2}\sin x-\frac{\sqrt{2}}{2}\cos x\right)^2}=0\)

\(\Leftrightarrow\frac{1}{\cos^2x}-\frac{1}{\frac{1}{2}\sin^2x-\sin x.\cos x+\frac{1}{2}\cos^2x}=0\)

\(\Leftrightarrow\frac{1}{2}\sin^2x-\sin x.\cos x+\frac{1}{2}\cos^2x-\cos^2x=0\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}\cos^2x-\sin x.\cos x-\frac{1}{2}\cos^2x=0\)

\(\Leftrightarrow\cos^2x+\sin x.\cos x-\frac{1}{2}=0\)

Đến đây là dễ r nha bn :3

a: sin a=2/3

=>cos^2a=1-(2/3)^2=5/9

=>\(cosa=\dfrac{\sqrt{5}}{3}\)

\(tana=\dfrac{2}{3}:\dfrac{\sqrt{5}}{3}=\dfrac{2}{\sqrt{5}}\)

\(cota=1:\dfrac{2}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)

b: cos a=1/5

=>sin^2a=1-(1/5)^2=24/25

=>\(sina=\dfrac{2\sqrt{6}}{5}\)

\(tana=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)

\(cota=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)

c: cot a=1/tana=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>1/cos^2a=1+4=5

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\dfrac{2}{\sqrt{5}}\)

NV
4 tháng 3 2021

\(tana-cota=2\sqrt{3}\Rightarrow\left(tana-cota\right)^2=12\)

\(\Rightarrow\left(tana+cota\right)^2-4=12\Rightarrow\left(tana+cota\right)^2=16\)

\(\Rightarrow P=4\)

\(sinx+cosx=\dfrac{1}{5}\Rightarrow\left(sinx+cosx\right)^2=\dfrac{1}{25}\)

\(\Rightarrow1+2sinx.cosx=\dfrac{1}{25}\Rightarrow sinx.cosx=-\dfrac{12}{25}\)

\(P=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}=\dfrac{sin^2x+cos^2x}{sinx.cosx}=\dfrac{1}{sinx.cosx}=\dfrac{1}{-\dfrac{12}{25}}=-\dfrac{25}{12}\)

-4 ở đâu ra vậy ạ

 

NV
21 tháng 4 2019

\(\left(cota+tana\right)^2-\left(cota-tana\right)^2\)

\(=cot^2a+2+tan^2a-\left(cot^2a-2+tan^2a\right)\)

\(=2+2=4\)

Bạn chép sai đề rồi

NV
15 tháng 10 2019

a/ \(sinx=0,6\Rightarrow cosx=\sqrt{1-sin^2x}=0,8\)

\(\Rightarrow tanx=\frac{sinx}{cosx}=\frac{0,6}{0,8}=\frac{3}{4}\) ; \(cotx=\frac{1}{tanx}=\frac{4}{3}\)

\(\Rightarrow2tan^2x-cotx=-\frac{5}{24}\)

b/ Tương tự \(sinx=\sqrt{1-cos^2x}=0,6\Rightarrow\left\{{}\begin{matrix}tanx=\frac{3}{4}\\cotx=\frac{4}{3}\end{matrix}\right.\) \(\Rightarrow...\)

c/ \(\frac{16}{9}=tan^2x=\frac{sin^2x}{cos^2x}=\frac{1-cos^2x}{cos^2x}\)

\(\Rightarrow16cos^2x=9-9cos^2x\Rightarrow cos^2x=\frac{9}{25}\)

\(\Rightarrow sin^2x=1-cos^2x=\frac{16}{25}\Rightarrow sinx=\frac{4}{5}\)

\(\Rightarrow sinx-cos^2x=...\)

16 tháng 10 2019

bạn có thể giải rõ ra giúp mk được hông