Qua điểm S nằm bên ngoài đường tròn (O), vẽ tiếp tuyến SA và cát tuyến SBC của đường tròn (SB, SC). Tia phân giác của góc BAC cắt dây BC tại D và cắt (O) tại E. a) Chứng minh SA = SD. b) SD2 = SB . SC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tia phân giác AD cắt (O) tại E.
+ là góc có đỉnh nằm bên trong đường tròn
+ là góc tạo bởi tiếp tuyến AS và dây AE
+ lần lượt là các góc nội tiếp chắn các cung
Từ (1); (2) và (3) suy ra
⇒ ΔSAD cân tại S
⇒ SA = SD.
Tia phân giác AD cắt (O) tại E.
+ là góc có đỉnh nằm bên trong đường tròn
+ là góc tạo bởi tiếp tuyến AS và dây AE
+ lần lượt là các góc nội tiếp chắn các cung
Từ (1); (2) và (3) suy ra
⇒ ΔSAD cân tại S
⇒ SA = SD.
Kiến thức áp dụng
+ Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.
+ Số đo của góc tạo bởi tiếp tuyến và dây cung bằng nửa số đo cung bị chắn.
+ Các góc nội tiếp bằng nhau chắn các cung bằng nhau.
Gọi giao của AD và (O) là E
\(\widehat{ADS}=\dfrac{sđ\stackrel\frown{AB}+sđ\stackrel\frown{CE}}{2}=\dfrac{sđ\stackrel\frown{AB}+sđ\stackrel\frown{BE}}{2}\)(Vì cung BE=cung CE)
\(\widehat{SAD}=\dfrac{sđ\stackrel\frown{AB}+sđ\stackrel\frown{BE}}{2}\)
Do đó: góc SDA=góc SAD
=>ΔSDA cân tại S
=>SA=SD
keo dai AD cắt (O) tại E
- DAD=DAC=>cung BE=cungEC
- SDA=1/2 sđcung AB+1/2 sđ cung EC
- SAE=1/2 sđ AE=1/2sđ AB+1/2 sđ BE
=> góc SAE= góc SDA
=> tam giác SAD cân tai S
=>SA=SD
a.
Do AE là phân giác \(\Rightarrow\widehat{BAE}=\widehat{CAE}\Rightarrow sđ\stackrel\frown{BE}=sđ\stackrel\frown{CE}\)
\(\widehat{SAE}\) là góc tạo bởi tiếp tuyến tại A và dây AE \(\Rightarrow\widehat{SAE}=\dfrac{1}{2}sđ\stackrel\frown{AE}\) (1)
\(\widehat{SDA}\) là góc có đỉnh nằm trong đường tròn
\(\Rightarrow\widehat{SDA}=\dfrac{1}{2}\left(sđ\stackrel\frown{AB}+sđ\stackrel\frown{CE}\right)\) \(=\dfrac{1}{2}\left(sđ\stackrel\frown{AB}+sđ\stackrel\frown{BE}\right)=\dfrac{1}{2}sđ\stackrel\frown{AE}\) (2)
(1);(2) \(\Rightarrow\widehat{SAE}=\widehat{SDA}\Rightarrow\Delta SAD\) cân tại S
\(\Rightarrow SA=SD\)
b.
Ta có \(SA=SA'\) (t/c hai tiếp tuyến cắt nhau); \(OA=OA'=R\)
\(\Rightarrow SO\) là trung trực của AA'
Hay SO vuông góc AA' tại H hay tam giác SHF vuông tại H
\(sđ\stackrel\frown{BE}=sđ\stackrel\frown{CE}\Rightarrow E\) là điểm chính giữa cung BC
OE là đường kính đi qua đi qua điểm chính giữa cung BC \(\Rightarrow OE\perp BC\)
Hay tam giác SGO vuông tại G
Xét hai tam giác SGO và SHF có:
\(\left\{{}\begin{matrix}\widehat{SGO}=\widehat{SHF}=90^0\\\widehat{GSO}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta SGO\sim\Delta SHF\left(g.g\right)\)
\(\Rightarrow\dfrac{SO}{SF}=\dfrac{SG}{SH}\Rightarrow SH.SO=SG.SF\)
c.
SA là tiếp tuyến tại A \(\Rightarrow\Delta SAO\) vuông tại A
Áp dụng hệ thức lượng trong tam giác vuông SAO với đường cao AH:
\(SA^2=SH.SO\)
Mà theo chứng minh trên \(\left\{{}\begin{matrix}SD=SA\\SH.SO=SG.SF\end{matrix}\right.\)
\(\Rightarrow SD^2=SG.SF\)
d.
Do OE vuông góc BC tại G (theo cm câu b) \(\Rightarrow G\) là trung điểm BC
\(\Rightarrow BG=\dfrac{1}{2}BC=\dfrac{a}{3}\Rightarrow SG=SB+BG=\dfrac{4a}{3}\)
Xét hai tam giác SAB và SCA có:
\(\left\{{}\begin{matrix}\widehat{SAB}=\widehat{SCA}\left(\text{cùng chắn AB}\right)\\\widehat{CSA}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta SAB\sim\Delta SCA\left(g.g\right)\)
\(\Rightarrow\dfrac{SA}{SC}=\dfrac{SB}{SA}\Rightarrow SA^2=SB.SC=SB^2.\left(SB+BC\right)=\dfrac{5a^2}{3}\)
Theo đẳng thức câu c: \(SA^2=SD^2=SG.SF\)
\(\Rightarrow SF=\dfrac{SA^2}{SG}=\dfrac{5a}{4}\)
a) Ta có : Góc SAB = 1/2 sđ cung AB ( Góc tạo bởi tiếp tuyến và dây cung)
Góc SCA = 1/2 sđ cung AB (Góc nội tiếp)
=> Góc SAB = Góc SCA
Xét hai tam giác : \(\Delta SAB\)và \(\Delta SCA\)có : Góc ASC chung , Góc SAB = góc SCA
=> \(\Delta SAB~\Delta SCA\left(g.g\right)\)\(\Rightarrow\frac{SA}{SC}=\frac{SB}{SA}\Rightarrow SA^2=SB.SC\)
b) Ta có SDA là góc ngoài của tam giác ACD \(\Rightarrow SDA=DAC+DCA=DAC+\frac{1}{2}sdAB\)
Mặt khác, ta có ; \(SAD=BAD+\frac{1}{2}sdAB=DAC+\frac{1}{2}sdAB\)( Vì AD là tia phân giác)
Do đó góc SDA = góc SAD => Tam giác SAD cân tại S => SA = SD
a.
Ta có \(\widehat{SAD}=\widehat{ACE}\) (góc nội tiếp và góc tiếp tuyến cùng chắn cung AE)
Lại có \(\widehat{ADB}\) là góc có đỉnh nằm trong đường tròn
\(\Rightarrow\widehat{ADB}=\dfrac{1}{2}\left(sđ\stackrel\frown{AB}+sđ\stackrel\frown{CE}\right)=\widehat{ACB}+\widehat{CAE}\)
Mà \(\widehat{ACB}=\widehat{SAB}\) (cùng chắn cung AB) và \(\widehat{CAE}=\widehat{BAE}\) (do AE là phân giác \(\widehat{BAC}\))
\(\Rightarrow\widehat{ADB}=\widehat{SAB}+\widehat{BAE}=\widehat{SAD}\Rightarrow\Delta SAD\) cân tại S
\(\Rightarrow SA=SD\)
b.
Xét hai tam giác SAB và SCA có:
\(\left\{{}\begin{matrix}\widehat{ASB}\text{ chung}\\\widehat{SAB}=\widehat{ACB}\left(cmt\right)\end{matrix}\right.\) \(\Rightarrow\Delta SAB\sim\Delta SCA\left(g.g\right)\)
\(\Rightarrow\dfrac{SA}{SC}=\dfrac{SB}{SA}\Rightarrow SA^2=SB.SC\)
Theo câu a ta có \(SA=SD\)
\(\Rightarrow SD^2=SB.SC\)