K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 1

a.

Do AE là phân giác \(\Rightarrow\widehat{BAE}=\widehat{CAE}\Rightarrow sđ\stackrel\frown{BE}=sđ\stackrel\frown{CE}\) 

\(\widehat{SAE}\) là góc tạo bởi tiếp tuyến tại A và dây AE \(\Rightarrow\widehat{SAE}=\dfrac{1}{2}sđ\stackrel\frown{AE}\) (1)

\(\widehat{SDA}\) là góc có đỉnh nằm trong đường tròn 

\(\Rightarrow\widehat{SDA}=\dfrac{1}{2}\left(sđ\stackrel\frown{AB}+sđ\stackrel\frown{CE}\right)\)  \(=\dfrac{1}{2}\left(sđ\stackrel\frown{AB}+sđ\stackrel\frown{BE}\right)=\dfrac{1}{2}sđ\stackrel\frown{AE}\) (2)

(1);(2) \(\Rightarrow\widehat{SAE}=\widehat{SDA}\Rightarrow\Delta SAD\) cân tại S

\(\Rightarrow SA=SD\)

b.

Ta có \(SA=SA'\) (t/c hai tiếp tuyến cắt nhau); \(OA=OA'=R\)

\(\Rightarrow SO\) là trung trực của AA'

Hay SO vuông góc AA' tại H hay tam giác SHF vuông tại H

\(sđ\stackrel\frown{BE}=sđ\stackrel\frown{CE}\Rightarrow E\) là điểm chính giữa cung BC

OE là đường kính đi qua đi qua điểm chính giữa cung BC \(\Rightarrow OE\perp BC\)

Hay tam giác SGO vuông tại G

Xét hai tam giác SGO và SHF có: 

\(\left\{{}\begin{matrix}\widehat{SGO}=\widehat{SHF}=90^0\\\widehat{GSO}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta SGO\sim\Delta SHF\left(g.g\right)\)

\(\Rightarrow\dfrac{SO}{SF}=\dfrac{SG}{SH}\Rightarrow SH.SO=SG.SF\)

NV
5 tháng 1

c.

SA là tiếp tuyến tại A \(\Rightarrow\Delta SAO\) vuông tại A

Áp dụng hệ thức lượng trong tam giác vuông SAO với đường cao AH:

\(SA^2=SH.SO\)

Mà theo chứng minh trên \(\left\{{}\begin{matrix}SD=SA\\SH.SO=SG.SF\end{matrix}\right.\)

\(\Rightarrow SD^2=SG.SF\)

d.

Do OE vuông góc BC tại G (theo cm câu b) \(\Rightarrow G\) là trung điểm BC

\(\Rightarrow BG=\dfrac{1}{2}BC=\dfrac{a}{3}\Rightarrow SG=SB+BG=\dfrac{4a}{3}\)

Xét hai tam giác SAB và SCA có:

\(\left\{{}\begin{matrix}\widehat{SAB}=\widehat{SCA}\left(\text{cùng chắn AB}\right)\\\widehat{CSA}\text{ chung}\end{matrix}\right.\)  \(\Rightarrow\Delta SAB\sim\Delta SCA\left(g.g\right)\)

\(\Rightarrow\dfrac{SA}{SC}=\dfrac{SB}{SA}\Rightarrow SA^2=SB.SC=SB^2.\left(SB+BC\right)=\dfrac{5a^2}{3}\)

Theo đẳng thức câu c: \(SA^2=SD^2=SG.SF\)

\(\Rightarrow SF=\dfrac{SA^2}{SG}=\dfrac{5a}{4}\)