K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2015

Vì (x2-15)(x2-8) <0

=> x2-15  và  x2-8 khác dấu

Mà x2-15 < x2-8 

=> x2-15 < 0 và x2-8 > 0

Ta có: x2-15 < 0

=> x2 < 15 (1)

Ta có : x2-8 > 0 

=> x2  > 8 (2)

Từ (1)  (2) => 8 < x2 < 15

=> x2  {9;10;11;12;13;14}

=> x2 = 9

=> x = 3

19 tháng 1 2017

Bài 1: Cho từng cái < hoặc > 0 rồi giải ra tìm điều kiện của x

Bài 2:

Phân tích số 12 ra là:

3 x 4 = 12

-3 x (-4) = 12

Ta thấy: 

3 + 4 = 7

-3 + (-4) = -7 (đáp ứng đúng yêu cầu đề)

=> a = -3 và b = -4

8 tháng 1 2017

Bạn nói qua thôi vì dài 

A, bạn lập bẳng ra x,y thuộc ước của -21

B,Bạn cũng lập bảng thuộc ước của -35.Lưu Ý:(2x-1) là số lẻ còn (2x+10) lẻ nốt

c,Phân tích khi mở ngoặc chuyển vế sao cho ra kết quả

D, hai trường hợp xảy ra.TH1:Vế trái bằng 0:TH2:Vế phải bằng 0

8 tháng 1 2018

Bài 1 : 

A ) 3 < x < 5

=> x thuộc  { 4 }

Vậy x = 4

Câu b và câu c cứ theo vậy mà làm .

Bài 2 : 

| x + 7 | = 0 

  x         = 0 - 7 

  x         = -7

Vậy x = -7

8 tháng 1 2018

Bài 1:

a, 3<x<5 => x=4

b, -4 < x - 1 < 5

=> x-1 thuộc {-3;-2;-1;0;1;2;3;4}

=> x thuộc {-2;-1;0;1;2;3;4;5}

c, -8 < x+2 < -3

=> x+2 thuộc {-7;-6;-5;-4}

=> x thuộc {-9;-8;-7;-6}

23 tháng 1 2017

bài 2: (x-3).(y+2) = -5

    Vì x, y \(\in\)Z   => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}

Ta có bảng: 

x-35-5-11
y+21-1-55
x8-224
y-1-3-73



bài 3: a(a+2)<0

TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)

TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
 

           Vậy -2<a<0

23 tháng 1 2017

Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)

TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2

TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại

                         Vậy 1<a<2