K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2016

mik không biết

19 tháng 2 2019

a)\(|x-5|\le2\Leftrightarrow\orbr{\begin{cases}x-5\le2\\x-5\ge2\end{cases}\Leftrightarrow\orbr{\begin{cases}x\le7\\x\ge3\end{cases}}}\)

b)\(\left(x^2-20\right)\left(x^2-15\right)\left(x^2-10\right)\left(x^2-5\right)< 0\Leftrightarrow\left(x^4-25x^2+100\right)\left(x^4-25x^2+150\right)< 0\\\)

bạn lm như thường nha

mk lười nhập quá

25 tháng 4 2018

TH1 : 3 số dương, 1 số âm 

=> ( x2 - 20 ) < 0 < ( x2 - 15 ) < ( x - 10 ) < ( x2 - 5 )

=> 15 < x2 < 20 

=> x2 = 16

=> x = 4; -4

TH2 : 3 số âm ; 1 số dương

=> ( x2 - 20 ) < ( x2 - 15 ) < ( x - 10 )<0<( x2 - 5 )

=> 10 < x2 < 15

=> x thuộc rỗng

Vậy x = 4;-4

26 tháng 9 2021

Để \(\left(x^2-20\right)\left(x^2-15\right)\left(x^2-10\right)\left(x^2-5\right)< 0\)

Thì phải có một sốâm và 3 số dương hoặc 1 số dương và 3 số âm

Mà \(x^2\ge0\forall x\)

\(\Rightarrow x^2-20< x^2-15< x^2-10< x^2-5\)

+ Với TH có 1 số âm và 3 số dương:

\(\Rightarrow\left\{{}\begin{matrix}x^2-20< 0\\x^2-15>0\end{matrix}\right.\)\(\Leftrightarrow15< x^2< 20\Leftrightarrow x^2=16\Leftrightarrow x=\pm4\)

+ Với TH có 1 số dương và 3 số âm:

\(\Rightarrow\left\{{}\begin{matrix}x^2-10< 0\\x^2-5>0\end{matrix}\right.\)\(\Leftrightarrow5< x^2< 10\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)

Vậy \(S=\left\{\pm3;\pm4\right\}\)

17 tháng 8 2019

Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)

Ta có: (1/2x - 5)20 \(\ge\)\(\forall\)x

         (y2 - 1/4)10 \(\ge\)\(\forall\)y

=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)\(\forall\)x;y

Theo (1) => ko có giá trị x;y t/m

Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0

=> (x - 7)x + 1.[1 - (x - 7)10] = 0

=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)

=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)

Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)\(\forall\)x

=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x

=>  A \(\ge\)-1 \(\forall\)x

Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6

Vậy Min A = -1 tại x = -1/6

b) Ta có: -(4/9x - 2/5)6 \(\le\)\(\forall\)x

=> -(4/9x - 2/15)6 + 3 \(\le\)\(\forall\)x

=> B \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10

vậy Max B = 3 tại x = 3/10

17 tháng 8 2019

Đúng ko vậy bạn

25 tháng 9 2018

làm hộ mik cho

17 tháng 2 2018

\(\left(-3-x\right)\left(x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}-3-x=0\\x+5=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\x=-5\end{cases}}\)