Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)
Ta có: \(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|y+2\right|\ge0\forall x\\\left|z-3\right|\ge0\forall x\end{cases}\Rightarrow\left|x-1\right|+\left|y+2\right|+\left|z-3\right|\ge0\forall x;y;z}\)
Mà \(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)
\(\hept{\begin{cases}\left|x-1\right|=0\\\left|y+2\right|=0\\\left|z-3\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\\z=3\end{cases}}\)
Vậy \(x=1;y=-2;z=3\)
\(\left|x+5\right|\le2\Rightarrow-2\le x+5\le2\)
\(\Rightarrow x+5\in\left\{-2;-1;0;1;2\right\}\)
\(\Rightarrow x\in\left\{-7;-6;-5;-4;-3\right\}\)
\(\left(x^2-5\right)\left(x^2-10\right)\left(x^2-15\right)\left(x^2-20\right)< 0\)
Xét 2 trường hợp:
TH1:Trong 4 số có 3 số âm 1 số dương.
Theo bài ra,ta có:\(\hept{\begin{cases}x^2-5>0\\x^2-10< 0\end{cases}}\Rightarrow\hept{\begin{cases}x^2>5\\x^2>10\end{cases}\Rightarrow}5< x^2< 10\Rightarrow x=3\left(h\right)x=-3\)
TH2:Trong 4 số có 3 số dương,1 số âm.
Theo bài ra,ta có:\(\hept{\begin{cases}x^2-20< 0\\x^2-15>0\end{cases}\Rightarrow}\hept{\begin{cases}x^2< 20\\x^2>15\end{cases}}\Rightarrow15< x^2< 20\Rightarrow x=4\left(h\right)x=-4\)
Vậy \(x\in\left\{3;-3;4;-4\right\}\)
\(y\left(y-5\right)\left(y-10\right)\left(y-15\right)< 0\)y(y-5)(y-10)(y-15)<0
\(\left(y^2-15y\right)\left(y^2-15y+50\right)< 0\)(y^2-15y)(y^2-15y+50)
\(\left(z\right)\left(z+50\right)< 0\)
\(-50< z< 0\Rightarrow\hept{\begin{cases}y^2-15y< 0\Rightarrow0< y< 15\\y^2-15>-50dungvoi.\forall y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y>0\\y< 15\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-5>0\Leftrightarrow\orbr{\begin{cases}x>5\\x< -5\end{cases}}\\x^2-5< 15\Rightarrow-10< x< 10\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2-5>0\Rightarrow x< -5hoac.x>5\\x^2-5< 10\Rightarrow-10< x< 10\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}-10< x< -5\\5< x< 10\end{cases}}\)
Để đẳng thức trên xảy ra thì phải có ít nhất 1 số âm hoặc 3 số âm
TH1:có 1 số âm
=>x2-20 < 0 <x2-15
=>15 < x2 <20
=> x2=16
=> x = +-4
TH2:có 3 số âm
=> x2-10 < 0 <x2-5
=> 5 < x2 <10
=> x2 =9
=>x=+-3. Vậy x=3;x=-3;x=4hoặc x=-4
Chắc lun đó bạn ạ.Chúc bạn học giỏi nha!
a) Ta có: \(\left(x-\frac{1}{5}\right).\left(x+\frac{4}{7}\right)>0\)
+ \(\hept{\begin{cases}x-\frac{1}{5}>0\\x+\frac{4}{7}>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>\frac{1}{5}\\x>-\frac{4}{7}\end{cases}}\)\(\Rightarrow\)\(x>\frac{1}{5}\)
+ \(\hept{\begin{cases}x-\frac{1}{5}< 0\\x+\frac{4}{7}< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< \frac{1}{5}\\x< -\frac{4}{7}\end{cases}}\)\(\Rightarrow\)\(x< -\frac{4}{7}\)
Vậy \(x>\frac{1}{5}\)hoặc \(x< -\frac{4}{7}\)
b) Ta có: \(\left(x+\frac{2}{3}\right).\left(x+2\right)< 0\)
+ \(\hept{\begin{cases}x+\frac{2}{3}>0\\x+2< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>-\frac{2}{3}\\x< -2\end{cases}}\)\(\Rightarrow\)\(-\frac{2}{3}< x< -2\)( vô lí )
+ \(\hept{\begin{cases}x+\frac{2}{3}< 0\\x+2>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< -\frac{2}{3}\\x>-2\end{cases}}\)\(\Rightarrow\)\(-\frac{2}{3}>x>-2\)
Vậy \(-2< x< -\frac{2}{3}\)
a. \(\frac{7}{8}< \frac{x}{35}< \frac{15}{7}\)
\(\Rightarrow\frac{245}{280}< \frac{8x}{280}< \frac{600}{280}\)
\(\Rightarrow245< 8x< 600\)
\(\Rightarrow30< x< 75\)
\(\Rightarrow x\in\left\{31;32;33;...;72;73;74\right\}\)
b. \(\frac{21}{3}< \frac{x}{7}\le\frac{24}{2}\)
\(\Rightarrow\frac{294}{42}< \frac{6x}{42}\le\frac{504}{42}\)
\(\Rightarrow294< 6x\le504\)
\(\Rightarrow49< x\le84\)
\(\Rightarrow x\in\left\{50;51;52;...;82;83;84\right\}\)
a)\(|x-5|\le2\Leftrightarrow\orbr{\begin{cases}x-5\le2\\x-5\ge2\end{cases}\Leftrightarrow\orbr{\begin{cases}x\le7\\x\ge3\end{cases}}}\)
b)\(\left(x^2-20\right)\left(x^2-15\right)\left(x^2-10\right)\left(x^2-5\right)< 0\Leftrightarrow\left(x^4-25x^2+100\right)\left(x^4-25x^2+150\right)< 0\\\)
bạn lm như thường nha
mk lười nhập quá