K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2015

b)

\(=\sqrt{5+4\sqrt{5}+4}-\sqrt{5-4\sqrt{5}+4}\)

\(=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}=\sqrt{5}+2-\left(\sqrt{5-2}\right)=\sqrt{5}+2-\sqrt{5}+2=4\)

28 tháng 6 2015

Dặt A = ...........

      A^2  = 7 + .. + 7 - ... - 2 căn 49 -13 =14 -12 = 2

=> a = căn 2

b, tương tự

18 tháng 6 2021

`a)\sqrt{9-4sqrt5}-sqrt5`

`=sqrt{5-2.2sqrt5+4}-sqrt5`

`=sqrt{(sqrt5-2)^2}-sqrt5`

`=|\sqrt5-2|-sqrt5`

`=sqrt5-2-sqrt5=-2`

`b)\sqrt{7-4sqrt3}+sqrt{4-2sqrt3}`

`=\sqrt{4-2.2sqrt3+3}+\sqrt{3-2sqrt3+1}`

`=sqrt{(2-sqrt3)^2}+sqrt{(sqrt3-1)^2}`

`=|2-sqrt3|+|sqrt3-1|`

`=2-sqrt3+sqrt3-1=1`

`c)(x-49)/(sqrtx-7)(x>=0,x ne 49)`

`=((sqrtx-7)(sqrtx+7))/(sqrtx-7)`

`=sqrtx+7`

`d)\sqrt{4+2\sqrt3}-\sqrt{13+4sqrt3}`

`=\sqrt{3+2sqrt3+1}-\sqrt{12+2.2sqrt3+1}`

`=sqrt{(sqrt3+1)^2}-\sqrt{(2sqrt3+1)^2}`

`=sqrt3+1-2sqrt3-1=-sqrt3`

`e)2+sqrt{17-4sqrt{9+4sqrt{45}}}`(câu này hơi sai)

18 tháng 6 2021

phần e bỏ số 4 ở cuối đi :)) 

16 tháng 8 2023

1) 

a) \(\sqrt{2x-4}\) có nghĩa khi:

\(2x-4\ge0\)

\(\Leftrightarrow2x\ge4\)

\(\Leftrightarrow x\ge\dfrac{4}{2}\)

\(\Leftrightarrow x\ge2\)

b) \(\sqrt{\dfrac{-7}{4-x}}\) có nghĩa khi 

\(\dfrac{-7}{4-x}\ge0\) mà \(-7< 0\)

\(\Rightarrow4-x\le0\)

\(\Leftrightarrow x\ge4\)

16 tháng 8 2023

bạn ơi còn ý 2 nx mà

24 tháng 6 2021

a)\(A=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)

\(=\sqrt[3]{1+3\sqrt{2}+3\sqrt{2^2}+2\sqrt{2}}-\sqrt[3]{2\sqrt{2}-3\sqrt{2^2}+3\sqrt{2}-1}\)

\(=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\sqrt[.3]{\left(\sqrt{2}-1\right)^3}\)

\(=1+\sqrt{2}-\left(\sqrt{2}-1\right)=2\)

b)\(B=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)

\(\Leftrightarrow B^3=5+2\sqrt{13}+3\sqrt[3]{\left(5+2\sqrt{13}\right)\left(5-2\sqrt{13}\right)}\left(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5+2\sqrt{13}}\right)+5-2\sqrt{13}\)

\(\Leftrightarrow B^3=10+3.\sqrt[3]{-27}.B\)

\(\Leftrightarrow B^3+9B-10=0\)

\(\Leftrightarrow\left(B-1\right)\left(B^2+B+10\right)=0\)

\(\Leftrightarrow B=1\) (vì \(B^2+B+10>0\))

c)\(C=\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\)

\(\Leftrightarrow2C=\sqrt[3]{8\sqrt{5}+16}-\sqrt[3]{8\sqrt{5}-16}=\sqrt[3]{1+3\sqrt{5}+3\sqrt{5^2}+5\sqrt{5}}-\sqrt[3]{5\sqrt{5}-3\sqrt{5^2}+3\sqrt{5}-1}\)

\(=\sqrt[3]{\left(1+\sqrt{5}\right)^3}-\sqrt[3]{\left(\sqrt{5}-1\right)^3}\)

\(=1+\sqrt{5}-\left(\sqrt{5}-1\right)\)

\(\Rightarrow C=1\)

d) \(D=\dfrac{10}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}\left(\dfrac{1+\sqrt{2}}{\sqrt{4-2\sqrt{3}}}:\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\right)\)

\(=\dfrac{10\left(\sqrt[3]{3}+\sqrt[3]{2}\right)}{\left(\sqrt[3]{3}+\sqrt[3]{2}\right)\left(\sqrt[3]{9^2}-\sqrt[3]{6}+\sqrt[3]{2^2}\right)}\left(\dfrac{1+\sqrt{2}}{\sqrt{\left(1-\sqrt{3}\right)^2}}.\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\right)\)

\(=\dfrac{10\left(\sqrt[3]{3}+\sqrt[3]{2}\right)}{5}.\dfrac{1+\sqrt{2}}{\left|1-\sqrt{3}\right|}.\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\)

\(=2\left(\sqrt[3]{3}+\sqrt[3]{2}\right).\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

\(=2\left(\sqrt[3]{3}+\sqrt[3]{2}\right).\dfrac{\left(\sqrt{2}\right)^2-1}{\left(\sqrt{3}\right)^2-1}\)

\(=\sqrt[3]{3}+\sqrt[3]{2}\)

Vậy...

24 tháng 6 2021

Khiếp CTV kìa sợ quá ;-;

AH
Akai Haruma
Giáo viên
19 tháng 7 2021

Lời giải:

a. \(\sqrt{6-2\sqrt{5}}=\sqrt{5-2\sqrt{5}.\sqrt{1}+1}=\sqrt{(\sqrt{5}-1)^2}=\sqrt{5}-1\)

b. \(\sqrt{7-4\sqrt{3}}=\sqrt{4-2\sqrt{4}.\sqrt{3}+3}=\sqrt{(\sqrt{4}-\sqrt{3})^2}=\sqrt{4}-\sqrt{3}=2-\sqrt{3}\)

c.

\(\sqrt{3-2\sqrt{2}}-\sqrt{6-4\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}-\sqrt{4-4\sqrt{2}+2}\)

\(=\sqrt{(\sqrt{2}-1)^2}-\sqrt{(\sqrt{4}-\sqrt{2})^2}\)

\(=|\sqrt{2}-1|-|\sqrt{4}-\sqrt{2}|=\sqrt{2}-1-(2-\sqrt{2})=2\sqrt{2}-3\)

d.

\(=\sqrt{13+30\sqrt{2+\sqrt{(\sqrt{8}+1)^2}}}=\sqrt{13+30\sqrt{2+\sqrt{8}+1}}\)

\(=\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\sqrt{(\sqrt{2}+1)^2}}\)

\(=\sqrt{13+30(\sqrt{2}+1)}=\sqrt{43+30\sqrt{2}}=\sqrt{18+2\sqrt{18.25}+25}\)

\(=\sqrt{(\sqrt{18}+\sqrt{25})^2}=\sqrt{18}+\sqrt{25}=5+3\sqrt{2}\)

 

 

a) \(\sqrt{6-2\sqrt{5}}=\sqrt{5}-1\)

b) \(\sqrt{7-4\sqrt{3}}=2-\sqrt{3}\)

c) \(\sqrt{3-2\sqrt{2}}-\sqrt{6-4\sqrt{2}}=\sqrt{2}-1-2+\sqrt{2}=-3+2\sqrt{2}\)

d) Ta có: \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)

\(=\sqrt{13+30\sqrt{2+1+2\sqrt{2}}}\)

\(=\sqrt{13+30\left(\sqrt{2}+1\right)}\)

\(=\sqrt{43+30\sqrt{2}}\)

\(=5+3\sqrt{2}\)

a) Ta có: \(\left(\sqrt{7}-\sqrt{2}\right)\cdot\sqrt{9+2\sqrt{14}}\)

\(=\left(\sqrt{7}-\sqrt{2}\right)\cdot\left(\sqrt{7}+\sqrt{2}\right)\)

=7-2

=5

d) Ta có: \(\dfrac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\dfrac{6\sqrt{2}-4}{3-\sqrt{2}}\)

\(=2\sqrt{2}-\sqrt{7}+5\sqrt{7}-\dfrac{2\sqrt{2}\left(3-\sqrt{2}\right)}{3-\sqrt{2}}\)

\(=2\sqrt{2}+4\sqrt{7}-2\sqrt{2}\)

\(=4\sqrt{7}\)

a: =2-căn 3-2-căn 3

=-2căn 3

b: \(=\dfrac{1}{\sqrt{2}}\left(\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{7}+1-\sqrt{7}+1\right)=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)

c: \(A=\sqrt{4-\sqrt{10-2\sqrt{5}}}-\sqrt{4+\sqrt{10-2\sqrt{5}}}\)

=>\(A^2=4-\sqrt{10-2\sqrt{5}}+4+\sqrt{10-2\sqrt{5}}+2\cdot\sqrt{16-10+2\sqrt{5}}\)

\(\Leftrightarrow A^2=8+2\left(\sqrt{5}+1\right)=10+2\sqrt{5}\)

=>\(A=\sqrt{10+2\sqrt{5}}\)

1 tháng 8 2023

b) làm thế nào để ra được \(\dfrac{1}{ \sqrt{2}}\)\((\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}})\) vậy ạ?????

11 tháng 6 2018

Giải:

\(A=\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)

\(\Leftrightarrow A=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}\right)^2+4\sqrt{2}+1^2}}}\)

\(\Leftrightarrow A=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)

\(\Leftrightarrow A=\sqrt{13+30\sqrt{2+2\sqrt{2}+1^2}}\)

\(\Leftrightarrow A=\sqrt{13+30\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}+1^2}}\)

\(\Leftrightarrow A=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)

\(\Leftrightarrow A=\sqrt{13+30\left(\sqrt{2}+1\right)}\)

\(\Leftrightarrow A=\sqrt{5^2+2.5.3\sqrt{2}+\left(3\sqrt{2}\right)^2}\)

\(\Leftrightarrow A=\sqrt{\left(5+3\sqrt{2}\right)^2}\)

\(\Leftrightarrow A=5+3\sqrt{2}^2\)

Vậy ...

Câu b bị sai đề hay sao đó bạn, bạn kiểm tra lại rồi ghi lại đề nhé!

11 tháng 6 2018

Ok bạn ! \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)

a: \(=2\cdot\sqrt{\dfrac{18-2\sqrt{77}}{4}}-\sqrt{20+6\sqrt{11}}\)

\(=\sqrt{11}-\sqrt{7}-\sqrt{11}-3=-\sqrt{7}-3\)

b: B=\(=\left(\sqrt{13}-1\right)\cdot\sqrt{\dfrac{7+\sqrt{13}}{18}}+\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

Đặt \(C=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(\Leftrightarrow C^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\cdot\sqrt{16-10-2\sqrt{5}}\)

\(=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}\)

=>\(C=\sqrt{5}+1\)

\(B=\left(\sqrt{13}-1\right)\cdot\sqrt{\dfrac{14+2\sqrt{13}}{36}}+\sqrt{5}+1\)

\(=\dfrac{\left(\sqrt{13}-1\right)\left(\sqrt{13}+1\right)}{6}+\sqrt{5}+1\)

=(13-1)/6+căn5+1

=3+căn5

22 tháng 9 2019

@Akai Haruma

help em với

22 tháng 9 2019

Nhầm môn rồi bạn ơi!!!