Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{13-4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{12-2.2\sqrt{3}.1+1}+\sqrt{4-2.2.\sqrt{3}+3}\)
\(=\sqrt{\left(2\sqrt{3}-1\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\left|2\sqrt{3}-1\right|+\left|2-\sqrt{3}\right|\)
\(=2\sqrt{3}-1+2-\sqrt{3}=\sqrt{3}+1\)
b)\(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5+2\sqrt{5}.1+1}+\sqrt{5-2\sqrt{5}.1+1}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\left(\sqrt{5}+1\right)+\left(\sqrt{5}-1\right)=2\sqrt{5}\)
c)\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3+2\sqrt{3}.1+1}-\sqrt{3-2\sqrt{3}.1+1}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\left(\sqrt{3}+1\right)-\left(\sqrt{3}-1\right)=2\)
d)\(\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{4+2.2\sqrt{3}+3}+\sqrt{4-2.2.\sqrt{3}+3}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\left(2+\sqrt{3}\right)+\left(2-\sqrt{3}\right)=4\)
e)\(\sqrt{9+4\sqrt{5}}=\sqrt{5+2.\sqrt{5}.2+4}=\sqrt{\left(\sqrt{5}+2\right)^2}=\sqrt{5}+2\)
f)\(\sqrt{23+8\sqrt{7}}=\sqrt{16+2.4.\sqrt{7}+7}=\sqrt{\left(4+\sqrt{7}\right)^2}=4+\sqrt{7}\)
\(\sqrt{24+8\sqrt{5}}+\) \(\sqrt{9-4\sqrt{5}}=\) \(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}.2+4}\) + \(\sqrt{5-2\sqrt{5}.2+4}\)
= \(\sqrt{\left(2\sqrt{5}+2\right)^2}+\) \(\sqrt{\left(\sqrt{5}-2\right)^2}\) = \(2\sqrt{5}+2+\sqrt{5}-2=3\sqrt{5}\)
==================================================
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) = \(\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)= \(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)
===========================================================
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)
= \(\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\) \(=\sqrt{\left(3\sqrt{2}+5\right)^2}=3\sqrt{2}+5\)
================================================================
b: \(=\dfrac{\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}-1-\sqrt{3}-1}{\sqrt{2}}=-\sqrt{2}\)
c: \(=\dfrac{\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}-1-\sqrt{5}-1}{\sqrt{2}}=-\sqrt{2}\)
d: \(=\dfrac{\sqrt{18-2\sqrt{17}}-\sqrt{18+2\sqrt{17}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{17}-1-\sqrt{17}-1}{\sqrt{2}}=-\sqrt{2}\)
a: \(=\sqrt{4+2+\sqrt{3}}=\sqrt{6+\sqrt{3}}\)
c: \(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)
\(=\sqrt{13+30\left(\sqrt{2}+1\right)}\)
\(=\sqrt{43+30\sqrt{2}}\)
d: \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
\(=\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)
\(=\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|\)
TH1: x>=2
\(D=\sqrt{x-1}+1+\sqrt{x-1}-1=2\sqrt{x-1}\)
TH2: 0<=x<2
\(D=\sqrt{x-1}+1+1-\sqrt{x-1}=2\)
\(A=\left(2-\sqrt{3}\right)\sqrt{4+2.2.\sqrt{3}+3}=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=1\)
các câu còn lại làm tương tự nhé bạn !
b: \(=\dfrac{\sqrt{5}+1}{\sqrt{5}-1}+\dfrac{\sqrt{5}-1}{\sqrt{5}+1}\)
\(=\dfrac{6+2\sqrt{5}+6-2\sqrt{5}}{4}=\dfrac{12}{4}=3\)
c: \(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)
\(=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\)
e: \(=\dfrac{2\sqrt{3+\sqrt{5-2\sqrt{3}-1}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{\sqrt{2}\cdot\sqrt{3+\sqrt{3}-1}}{\sqrt{3}-1}=\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}-1}=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}\)
\(=\dfrac{4-2\sqrt{3}}{2}=2-\sqrt{3}\)
\(a.\left(2-\sqrt{3}\right)\sqrt{7+4\sqrt{3}}=\left(2-\sqrt{3}\right)\sqrt{4+2.2\sqrt{3}+3}=\left(2-\sqrt{3}\right)\sqrt{\left(2+\sqrt{3}\right)^3}\) = \(\left(2-\sqrt{3}\right)\) | \(2+\sqrt{3}\) | = \(4-3=1\)
\(b.\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\sqrt{8+2.2\sqrt{2}.\sqrt{5}+5}+\sqrt{8-2.2\sqrt{2}.\sqrt{5}+5}=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\) \(=\) | \(2\sqrt{2}+\sqrt{5}\) | \(+\) | \(2\sqrt{2}-\sqrt{5}\) | \(=4\sqrt{2}+2\sqrt{5}\)
\(c.\sqrt{7-3\sqrt{5}}=\dfrac{\sqrt{14-2.3\sqrt{5}}}{\sqrt{2}}=\dfrac{\sqrt{9-2.3\sqrt{5}+5}}{\sqrt{2}}=\dfrac{\sqrt{\left(3-\sqrt{5}\right)^2}}{\sqrt{2}}\)\(=\) \(\dfrac{\text{ |}3-\sqrt{5}\text{ |}}{\sqrt{2}}\) \(=\dfrac{3-\sqrt{5}}{\sqrt{2}}\)
\(d.\) Tương Tự nhé bạn.
\(A=\sqrt{19-3\sqrt{40}}-\sqrt{19+3\sqrt{40}}=\sqrt{19-2\sqrt{90}}-\sqrt{19+2\sqrt{90}}=\sqrt{10-2.\sqrt{10}.3+9}-\sqrt{10+2.\sqrt{10}.3+9}=\sqrt{\left(\sqrt{10}-3\right)^2}-\sqrt{\left(\sqrt{10}+3\right)^2}=\sqrt{10}-3-\sqrt{10}-3=-6\)\(B=\sqrt{21-6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}=\sqrt{18-2.\sqrt{18}.\sqrt{3}+3}+\sqrt{6+2.\sqrt{3}.\sqrt{6}+3}-\sqrt{24+12\sqrt{3}}=\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{6}+\sqrt{\sqrt{3}}\right)^2}-\sqrt{\left(\sqrt{18}+\sqrt{6}\right)^2}=\sqrt{18}-\sqrt{3}+\sqrt{6}+\sqrt{3}-\sqrt{18}-\sqrt{6}=0\)
\(C=\sqrt{6+2\sqrt{2\sqrt{3-\sqrt{4+2\sqrt{3}}}}}\)
\(C=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
\(C=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\) \(=\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\) \(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
\(D=\sqrt{\frac{8+2\sqrt{15}}{2}}-\sqrt{\frac{14-6\sqrt{5}}{2}}\) \(=\sqrt{\frac{\left(\sqrt{5}+\sqrt{3}\right)^2}{2}}-\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{2}}\)
\(=\frac{\sqrt{5}+\sqrt{3}-3+\sqrt{5}}{\sqrt{2}}=\frac{2\sqrt{10}+\sqrt{6}-3\sqrt{2}}{2}\)
\(E=\sqrt{\frac{4+2\sqrt{3}}{2}}+\sqrt{\frac{4-2\sqrt{3}}{2}}\) \(=\sqrt{\frac{\left(\sqrt{3}+1\right)^2}{2}}+\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{2}}\)
\(=\frac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
\(F=\sqrt{\frac{24-6\sqrt{7}}{2}}-\sqrt{\frac{24+6\sqrt{7}}{2}}\) \(=\sqrt{\frac{21-2\sqrt{21\cdot3}+3}{2}}-\sqrt{\frac{21+2\sqrt{21\cdot3}+3}{2}}\)
\(=\sqrt{\frac{\left(\sqrt{21}-\sqrt{3}\right)^2}{2}}-\sqrt{\frac{\left(\sqrt{21}+\sqrt{3}\right)^2}{2}}\)
\(=\frac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{2}}=\frac{-2\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)
\(G=\left(3+\sqrt{3}\right)\cdot\sqrt{12-6\sqrt{3}}\) \(=\left(3+\sqrt{3}\right)\cdot\sqrt{\left(3-\sqrt{3}\right)^2}\)
\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)=9-3=6\)
\(H=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(3-\sqrt{5}\right)^2}\) \(=\sqrt{5}-2-3-\sqrt{5}=-5\)
\(I=\sqrt{\left(2\sqrt{2}-1\right)^2}-\sqrt{\left(2\sqrt{3}-1\right)^2}\)
\(=2\sqrt{2}-1-2\sqrt{3}+1=2\sqrt{2}-2\sqrt{3}\)
b)
\(=\sqrt{5+4\sqrt{5}+4}-\sqrt{5-4\sqrt{5}+4}\)
\(=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}=\sqrt{5}+2-\left(\sqrt{5-2}\right)=\sqrt{5}+2-\sqrt{5}+2=4\)
Dặt A = ...........
A^2 = 7 + .. + 7 - ... - 2 căn 49 -13 =14 -12 = 2
=> a = căn 2
b, tương tự