√x-2+√9x-18=16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ x≥2
pt ⇔ \(\sqrt{x-2}+\sqrt{9\left(x-2\right)}=16\) ⇔ \(\sqrt{x-2}+3\sqrt{x-2}=16\) ⇔ \(4\sqrt{x-2}=16\) ⇔ \(\sqrt{x-2}=4\) ⇒ \(\left(\sqrt{x-2}\right)^2=4^2\) ⇔ \(x-2=16\) ⇔ \(x=18\)
Vậy phương trình có nghiệm duy nhất x=18
Đk: 2-x ≥ 0 hay x ≤ 2
Đặt \(\sqrt{2-x}=t\) với t ≥ 0
PT tương đương
t -3t+ 4t = 16
\(\Leftrightarrow\)2t = 16
\(\Rightarrow\) t = 8 (TMĐK)
Vậy \(\sqrt{2-x}=8\)
2 - x = 64
vậy x = -62
\(\sqrt{9x-18}+\sqrt{x-2}=16\)
\(\Rightarrow\sqrt{9x-18}=16-\sqrt{x-2}\)
\(\Rightarrow9x-18=256-32\sqrt{x-2}+x-2\)
\(\Rightarrow9x-x=272-\sqrt{x-2}\)
\(\Rightarrow\sqrt{x-2}=272-8x\)
\(\Rightarrow x-2=73984-4352x+64x^2\)
\(\Rightarrow64x^2-4353x+7386=0\)
Làm nốt
\(Đk:x\ge2\\ PT\Leftrightarrow\dfrac{10\sqrt{x-2}-\sqrt{x-2}+1}{2}=6\sqrt{x-2}\\ \Leftrightarrow9\sqrt{x-2}+1=12\sqrt{x-2}\\ \Leftrightarrow\sqrt{x-2}=\dfrac{1}{3}\Leftrightarrow x-2=\dfrac{1}{9}\\ \Leftrightarrow x=\dfrac{19}{9}\left(tm\right)\)
a: ĐKXĐ: x>=-2
\(PT\Leftrightarrow3\cdot3\sqrt{x+2}=\dfrac{1}{2}\cdot2\sqrt{x+2}+16\)
=>\(9\sqrt{x+2}-\sqrt{x+2}=16\)
=>\(8\sqrt{x+2}=16\)
=>\(\sqrt{x+2}=2\)
=>x+2=4
=>x=2
b: ĐKXĐ: \(x\in R\)
\(5+\sqrt{x^2-4x+4}=9\)
=>\(\left|x-2\right|=4\)
=>x-2=4 hoặc x-2=-4
=>x=6 hoặc x=-2
a) <=> 4x^3 - 12x^2 - x^2 + 3x + 6x - 18 = 0
<=> 4x^2 (x - 3) - x(x - 3) + 6(x - 3) = 0
<=> (x - 3)(4x^2 - x + 6) = 0
xét 2 th
. x - 3 = 0 <=> x = 3
. 4x^2 - x + 6 = 0
<=> 4x^2 + 2.(1/2)x + 1/4 + 23/4 = 0
<=> (4x + 1/2)^2 = -23/4
.... phần sau bạn tự làm nhé
vậy pt trên có nghiệm là ...
. mik bận nên chỉ làm như vậy thôi.. những ý sau thì tách tương tự
c) => x3 + 2x2 - 6x2 - 12x + 4x + 8 = 0
=> (x3 + 2x2) - (6x2 + 12x) + (4x + 8) = 0
=> x2. (x +2) - 6x. (x + 2) + 4.(x + 2) =0
=> (x +2).(x2 - 6x + 4) = 0
=> x+ 2 = 0 hoặc x2 - 6x + 4 = 0
+) x+ 2 =0 => x = -2
+) x2 - 6x + 4 = 0 => x2 - 2.x.3 + 9 - 5 = 0 => (x -3)2 = 5
=> x - 3 = \(\sqrt{5}\) hoặc x - 3 = - \(\sqrt{5}\)
=> x = 3 + \(\sqrt{5}\) hoặc x = 3 - \(\sqrt{5}\)
vậy...
a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)
\(\Leftrightarrow4\sqrt{x-3}=20\)
\(\Leftrightarrow x-3=25\)
hay x=28
b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)
\(\Leftrightarrow2\sqrt{x+2}=6\)
\(\Leftrightarrow x+2=9\)
hay x=7
a ⇒A=\(4\sqrt{4\times3}+3\sqrt{25\times3}-5\sqrt{16\times3}=8\sqrt{3}+15\sqrt{3}-20\sqrt{3}=3\sqrt{3}\)
b ĐKXĐ x≥2 ⇔\(\sqrt{x-2}+3\sqrt{x-2}=16\Leftrightarrow4\sqrt{x-2}=16\Leftrightarrow\sqrt{x-2}=4\Rightarrow x-2=16\Leftrightarrow x=18\)
a. \(A=4\sqrt{12}+3\sqrt{75}-5\sqrt{48}\)
\(=8\sqrt{3}+15\sqrt{3}-20\sqrt{3}\)
\(=3\sqrt{3}\)
b. \(\sqrt{x-2}-\sqrt{9x-18}=16\)
\(\Leftrightarrow\sqrt{x-2}-\sqrt{9\left(x-2\right)}=16\)
\(\Leftrightarrow\sqrt{x-2}-3\sqrt{x-2}=16\)
\(\Leftrightarrow-2\sqrt{x-2}=16\)
\(\Leftrightarrow\sqrt{x-2}=-8\) ( Vô lý )
Vậy PT vô nghiệm
\(\sqrt{x-2}+\sqrt{9x-18}=16\) ( ĐK : \(x\ge2\))
\(\Leftrightarrow\sqrt{x-2}+3\cdot\sqrt{x-2}=16\)
\(\Leftrightarrow\sqrt{x-2}\cdot\left(1+3\right)=16\)
\(\Leftrightarrow\sqrt{x-2}=4\)
\(\Leftrightarrow x-2=16\)
\(\Leftrightarrow x=18\left(tmđk\right)\)
Vậy PT có nghiệm x = 18
\(\sqrt{x-2}+\sqrt{9x-18}=16\left(x\ge2\right)\)
\(\Leftrightarrow4\sqrt{x-2}=16\)
\(\Leftrightarrow\sqrt{x-2}=4\)
\(\Leftrightarrow x-2=16\Leftrightarrow x=18\left(tm\right)\)
VẬY PT có nghiệm x=18