giúp em làm câu này chi tiết với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài AB và vận tốc dự kiến lần lượt là x,y
Theo đề, ta có hệ:
\(\left\{{}\begin{matrix}\dfrac{x}{y}=\dfrac{10}{3}\\\dfrac{x}{y+5}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-10y=0\\x-3y=15\end{matrix}\right.\)
=>x=150 và y=45
24.
Đường thẳng có 1 vtcp là \(\overrightarrow{u}=\left(2;-5\right)\)
25.
\(a^2=b^2+c^2-2bc.cosA\)
26.
A là mệnh đề sai, công thức đúng: \(S=\dfrac{1}{2}ab.sinC\)
27.
\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosA}=\sqrt{3^2+4^2-2.3.4.cos60^0}=\sqrt{13}\)
28.
\(\widehat{A}=180^0-\left(35^030'+45^0\right)=99^030'\)
Áp dụng định lý hàm sin:
\(\dfrac{a}{sinA}=\dfrac{b}{sinB}\Rightarrow b=\dfrac{a.sinB}{sinA}=\dfrac{12,5.sin\left(35^030'\right)}{sin\left(99^030'\right)}=7,36\left(m\right)\)
Câu 3.
a)Công suất hao phí trên đường dây tải điện:
\(P_{hp}=\dfrac{P^2\cdot R}{U^2}=\dfrac{5400^2\cdot65\cdot0,9}{25000^2}=2,73W\)
b)Nếu HĐT hai đầu đoạn dây là \(U=220V\) thì công suất tỏa nhiệt trên đường dây tải điện là:
\(P_{hp}=\dfrac{P^2\cdot R}{U^2}=\dfrac{5400^2\cdot0,9\cdot65}{220^2}=35245,04W\)
theo mình thì câu trên: dưới mẫu trong căn bỏ n^2 ra làm nhân tử chung xong đặt nhân tử chung của cả mẫu là n^2 . câu dưới thì mình k biết!!
\(\lim\dfrac{-3n+2}{n-\sqrt{4n+n^2}}=\lim\dfrac{\left(-3n+2\right)\left(n+\sqrt{4n+n^2}\right)}{\left(n-\sqrt{4n+n^2}\right)\left(n+\sqrt{4n+n^2}\right)}\)
\(=\lim\dfrac{\left(-3n+2\right)\left(n+\sqrt{4n+n^2}\right)}{-4n}=\lim\dfrac{n\left(-3+\dfrac{2}{n}\right)n\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4n}\)
\(=\lim n\dfrac{\left(-3+\dfrac{2}{n}\right)\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4}\)
Do \(\lim\left(n\right)=+\infty\)
\(\lim\dfrac{\left(-3+\dfrac{2}{n}\right)\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4}=\dfrac{\left(-3+0\right)\left(1+\sqrt{0+1}\right)}{-4}=\dfrac{3}{2}>0\)
\(\Rightarrow\lim n\dfrac{\left(-3+\dfrac{2}{n}\right)\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4}=+\infty\)
10.
\(H\left(x\right)=-5x^4+10x^3-15x+1\)
\(=-5x\left(x^3-2x^2+3\right)+1\)
\(=-5x.0+1\)
\(=1\)
9.
\(P\left(x\right)-Q\left(x\right)=\left(1-a\right)x^3+x^2+x-6\)
\(P\left(x\right)-Q\left(x\right)\) là đa thức bậc 3 khi và chỉ khi \(1-a\ne0\)
\(\Rightarrow a\ne1\)
bạn chỉ cần tách x4-1 thành (x2-1)(x2+1),rồi đặt x2=t là ok
Chụp đề bài rõ hơn đc ko ạ????
Với \(x\ge0;x\ne4\)
\(P=\left(\frac{4\sqrt{x}}{\sqrt{x}+2}-\frac{8x}{x-4}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}-2}+3\right)\)
\(=\left(\frac{4\sqrt{x}\left(\sqrt{x}-2\right)-8x}{x-4}\right):\left(\frac{\sqrt{x}+2+3\sqrt{x}-6}{\sqrt{x}-2}\right)\)
\(=\frac{-4x-8\sqrt{x}}{x-4}:\frac{4\sqrt{x}-4}{\sqrt{x}-2}=\frac{-4\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}.\frac{4\sqrt{x}-4}{\sqrt{x}-2}\)
\(=\frac{-16\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-2}\)
b, Ta có P = -4 hay \(\frac{-16\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-2}=-4\)
\(\Leftrightarrow\frac{-16x+16\sqrt{x}+4\sqrt{x}-8}{\sqrt{x}-2}=0\)
\(\Rightarrow-16x+20\sqrt{x}-8=0\Leftrightarrow x=\frac{9\pm5\sqrt{7}i}{32}\)
check lại hộ mình phần thu gọn nhé