Định nghĩa phép tính:
\(a\odot b=bx\left(a-5\right)-12\)
Tìm giá trị của \(6\odot\left(15\odot8\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cách 1:
\(\begin{array}{l}\left( {\frac{{ - 2}}{{ - 5}} + \frac{{ - 5}}{{ - 6}}} \right) + \frac{4}{5} = \frac{2}{5} + \frac{5}{6} + \frac{4}{5}\\ = \frac{{12}}{{30}} + \frac{{25}}{{30}} + \frac{{24}}{{30}} = \frac{{61}}{{30}}\end{array}\)
Cách 2:
\(\begin{array}{l}\left( {\frac{{ - 2}}{{ - 5}} + \frac{{ - 5}}{{ - 6}}} \right) + \frac{4}{5} = \left( {\frac{2}{5} + \frac{4}{5}} \right) + \frac{5}{6}\\ = \frac{6}{5} + \frac{5}{6} = \frac{{36}}{{30}} + \frac{{25}}{{30}} = \frac{{61}}{{30}}\end{array}\)
b) Cách 1:
\(\begin{array}{l}\frac{{ - 3}}{{ - 4}} + \left( {\frac{{11}}{{ - 15}} + \frac{{ - 1}}{2}} \right) = \frac{3}{4} + \frac{{ - 11}}{{15}} + \frac{{ - 1}}{2}\\ = \frac{{45}}{{60}} + \frac{{ - 44}}{{60}} + \frac{{ - 30}}{{60}}\\ = \frac{{ - 29}}{{60}}\end{array}\).
Cách 2:
\(\begin{array}{l}\frac{{ - 3}}{{ - 4}} + \left( {\frac{{11}}{{ - 15}} + \frac{{ - 1}}{2}} \right) = \frac{3}{4} + \frac{{ - 11}}{{15}} + \frac{{ - 1}}{2}\\ = \left( {\frac{3}{4} + \frac{{ - 1}}{2}} \right) + \frac{{ - 11}}{{15}}\\ = \left( {\frac{3}{4} + \frac{{ - 2}}{4}} \right) + \frac{{ - 11}}{{15}}\\ = \frac{1}{4} + \frac{{ - 11}}{{15}}\\ = \frac{{15}}{{60}} + \frac{{ - 44}}{{60}}\\ = \frac{{ - 29}}{{60}}\end{array}\)
\(C=\left|-3\left(\dfrac{-13}{15}-\dfrac{17}{21}\right)\right|-\left|\dfrac{-13}{15}+\dfrac{17}{7}\right|+\left(-12+\dfrac{35}{3}\right):\left|-\dfrac{7}{6}\right|\\ =\left|-3.-\dfrac{176}{105}\right|-\left|-\dfrac{6}{35}\right|+\left(-\dfrac{1}{3}\right):\dfrac{7}{6}\\ =\dfrac{176}{35}-\dfrac{6}{35}-\dfrac{1}{3}:\dfrac{7}{6}\\ =\dfrac{176}{35}-\dfrac{6}{35}-\dfrac{2}{7}\\ =\dfrac{170}{35}-\dfrac{2}{7}=\dfrac{32}{7}.\)
\(A=\left[\frac{1\frac{11}{31}\cdot4\frac{3}{7}-\left(15-6\frac{1}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-5\frac{1}{3}\right)}\cdot\left(-1\frac{14}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{\frac{42}{31}\cdot\frac{31}{7}-\left(15-\frac{19}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-\frac{16}{3}\right)}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{6-\left(15-\frac{2}{3}\right)}{\frac{29}{6}+\frac{10}{9}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{6-\frac{43}{3}}{\frac{107}{18}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{-\frac{25}{3}}{\frac{107}{18}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\frac{50}{31}\cdot\frac{31}{50}=1\)
a) A= \(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
Vì \(\left\{{}\begin{matrix}2=\sqrt{4}< \sqrt{5}\\2\sqrt{2}=\sqrt{8}>\sqrt{5}\end{matrix}\right.\) nên A = \(\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
= \(\sqrt{5}-2+2\sqrt{2}-\sqrt{5}\)
= \(2\left(\sqrt{2}-1\right)\)
b) B = \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\) (B > 0)
Ta có:
B2 = \(6+2\sqrt{5}-2\sqrt{\left(6+2\sqrt{5}\right)\left(6-2\sqrt{5}\right)}+6-2\sqrt{5}\)
= \(12-2\sqrt{36-20}\)
= \(12-8\)
= \(4\)
\(\Rightarrow\) B =\(\pm2\) nhưng vì B > 0 nên B = 2
Vậy B = 2
a) \(\sqrt{3+2\sqrt{2}}+\sqrt{\left(\sqrt{2}-2\right)^2}\)
\(=\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}\cdot1+1^2}+\left|\sqrt{2}-2\right|\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}-\left(\sqrt{2}-2\right)\)
\(=\left|\sqrt{2}+1\right|-\sqrt{2}+2\)
\(=\sqrt{2}+1-\sqrt{2}+2\)
\(=3\)
b) \(\dfrac{1}{5}\sqrt{50}-2\sqrt{96}-\dfrac{\sqrt{30}}{\sqrt{15}}+12\sqrt{\dfrac{1}{6}}\)
\(=\dfrac{1}{5}\cdot5\sqrt{2}-2\cdot4\sqrt{6}-\sqrt{\dfrac{30}{15}}+\sqrt{\dfrac{144}{6}}\)
\(=\sqrt{2}-8\sqrt{6}-\sqrt{2}+2\sqrt{6}\)
\(=-8\sqrt{6}+2\sqrt{6}\)
\(=-6\sqrt{6}\)
c) \(\left(\dfrac{5-\sqrt{5}}{\sqrt{5}}-2\right)\left(\dfrac{4}{1+\sqrt{5}}+4\right)\)
\(=\left[\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}}-2\right]\left[\dfrac{4\left(1-\sqrt{5}\right)}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+4\right]\)
\(=\left(\sqrt{5}-1-2\right)\left(\dfrac{4\left(1-\sqrt{5}\right)}{1-5}+4\right)\)
\(=\left(\sqrt{5}-3\right)\left(\sqrt{5}-1+4\right)\)
\(=\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)\)
\(=\left(\sqrt{5}\right)^2-3^2\)
\(=-4\)
a) \(\sqrt[]{3+2\sqrt[]{2}}+\sqrt[]{\left(\sqrt[]{2}-2\right)^2}\)
\(=\sqrt[]{2+2\sqrt[]{2}.1+1}+\left|\sqrt[]{2}-2\right|\)
\(=\sqrt[]{\left(\sqrt[]{2}+1\right)^2}+\left(2-\sqrt[]{2}\right)\) \(\left(\left(\sqrt[]{2}\right)^2=2< 2^2=4\right)\)
\(=\left|\sqrt[]{2}+1\right|+2-\sqrt[]{2}\)
\(=\sqrt[]{2}+1+2-\sqrt[]{2}\)
\(=3\)
\(1,\\ a,=\left(\dfrac{1}{4}\right)^3\cdot32=\dfrac{1}{64}\cdot32=\dfrac{1}{2}\\ b,=\left(\dfrac{1}{8}\right)^3\cdot512=\dfrac{1}{512}\cdot512=1\\ c,=\dfrac{2^6\cdot2^{10}}{2^{20}}=\dfrac{1}{2^4}=\dfrac{1}{16}\\ d,=\dfrac{3^{44}\cdot3^{17}}{3^{30}\cdot3^{30}}=3\\ 2,\\ a,A=\left|x-\dfrac{3}{4}\right|\ge0\\ A_{min}=0\Leftrightarrow x=\dfrac{3}{4}\\ b,B=1,5+\left|2-x\right|\ge1,5\\ A_{min}=1,5\Leftrightarrow x=2\\ c,A=\left|2x-\dfrac{1}{3}\right|+107\ge107\\ A_{min}=107\Leftrightarrow2x=\dfrac{1}{3}\Leftrightarrow x=\dfrac{1}{6}\)
\(d,M=5\left|1-4x\right|-1\ge-1\\ M_{min}=-1\Leftrightarrow4x=1\Leftrightarrow x=\dfrac{1}{4}\\ 3,\\ a,C=-\left|x-2\right|\le0\\ C_{max}=0\Leftrightarrow x=2\\ b,D=1-\left|2x-3\right|\le1\\ D_{max}=1\Leftrightarrow x=\dfrac{3}{2}\\ c,D=-\left|x+\dfrac{5}{2}\right|\le0\\ D_{max}=0\Leftrightarrow x=-\dfrac{5}{2}\)
\(a\odot b=bx\left(a-5\right)-12\)
\(6\odot\left(15\odot8\right)=6\odot\left(8x\left(15-5\right)-12\right)\)
\(=6\odot68\)
\(=68x\left(6-5\right)-12\)
\(=56\)