CMR \(\left(a^n+b^n\right)^{n+1}>\left(a^{n+1}+b^{n+1}\right)^n\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\)
\(a,\) Sửa: \(A=10^n+72n-1⋮81\)
Với \(n=1\Leftrightarrow A=10+72-1=81⋮81\)
Giả sử \(n=k\Leftrightarrow A=10^k+72k-1⋮81\)
Với \(n=k+1\Leftrightarrow A=10^{k+1}+72\left(k+1\right)-1\)
\(A=10^k\cdot10+72k+72-1\\ A=10\left(10^k+72k-1\right)-648k+81\\ A=10\left(10^k+72k-1\right)-81\left(8k-1\right)\)
Ta có \(10^k+72k-1⋮81;81\left(8k-1\right)⋮81\)
Theo pp quy nạp
\(\Rightarrow A⋮81\)
\(b,B=2002^n-138n-1⋮207\)
Với \(n=1\Leftrightarrow B=2002-138-1=1863⋮207\)
Giả sử \(n=k\Leftrightarrow B=2002^k-138k-1⋮207\)
Với \(n=k+1\Leftrightarrow B=2002^{k+1}-138\left(k+1\right)-1\)
\(B=2002\cdot2002^k-138k-138-1\\ B=2002\left(2002^k-138k-1\right)+276138k+1863\\ B=2002\left(2002^k-138k-1\right)+207\left(1334k+1\right)\)
Vì \(2002^k-138k-1⋮207;207\left(1334k+1\right)⋮207\)
Nên theo pp quy nạp \(B⋮207,\forall n\)
\(2,\)
\(a,\) Sửa đề: CMR: \(1\cdot2+2\cdot3+...+n\left(n+1\right)=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)
Đặt \(S_n=1\cdot2+2\cdot3+...+n\left(n+1\right)\)
Với \(n=1\Leftrightarrow S_1=1\cdot2=\dfrac{1\cdot2\cdot3}{3}=2\)
Giả sử \(n=k\Leftrightarrow S_k=1\cdot2+2\cdot3+...+k\left(k+1\right)=\dfrac{k\left(k+1\right)\left(k+2\right)}{3}\)
Với \(n=k+1\)
Cần cm \(S_{k+1}=1\cdot2+2\cdot3+...+k\left(k+1\right)+\left(k+1\right)\left(k+2\right)=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)
Thật vậy, ta có:
\(\Leftrightarrow S_{k+1}=S_k+\left(k+1\right)\left(k+2\right)\\ \Leftrightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(k+2\right)}{3}+\left(k+1\right)\left(k+2\right)\\ \Leftrightarrow S_{k+1}=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)
Theo pp quy nạp ta có đpcm
\(b,\) Với \(n=0\Leftrightarrow0^3=\left[\dfrac{0\left(0+1\right)}{2}\right]^2=0\)
Giả sử \(n=k\Leftrightarrow1^3+2^3+...+k^3=\left[\dfrac{k\left(k+1\right)}{2}\right]^2\)
Với \(n=k+1\)
Cần cm \(1^3+2^3+...+k^3+\left(k+1\right)^3=\left[\dfrac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)
Thật vậy, ta có
\(1^3+2^3+...+k^3+\left(k+1\right)^3\\ =\left[\dfrac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3\\ =\dfrac{k^2\left(k+1\right)^2+4\left(k+1\right)^3}{4}=\dfrac{\left(k+1\right)^2\left(k^2+4k+4\right)}{4}\\ =\dfrac{\left(k+1\right)^2\left(k+2\right)^2}{4}=\left[\dfrac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)
Theo pp quy nạp ta được đpcm
1. Đề sai, ví dụ (a;b;c)=(1;2;2) hay (1;2;7) gì đó
2. Theo nguyên lý Dirichlet, trong 4 số a;b;c;d luôn có ít nhất 2 số đồng dư khi chia 3.
Không mất tính tổng quát, giả sử đó là a và b thì \(a-b⋮3\)
Ta có 2 TH sau:
- Trong 4 số có 2 chẵn 2 lẻ, giả sử a, b chẵn và c, d lẻ \(\Rightarrow a-b,c-d\) đều chẵn \(\Rightarrow\left(a-b\right)\left(c-d\right)⋮4\)
\(\Rightarrow\) Tích đã cho chia hết 12
- Trong 4 số có nhiều hơn 3 số cùng tính chẵn lẽ, khi đó cũng luôn có 2 hiệu chẵn (tương tự TH trên) \(\Rightarrowđpcm\)
3. Với \(n=1\) thỏa mãn
Với \(n>1\) ta có \(3^n\equiv\left(5-2\right)^n\equiv\left(-2\right)^n\left(mod5\right)\)
\(\Rightarrow n.2^n+3^n\equiv n.2^n+\left(-2\right)^n\left(mod5\right)\)
Mặt khác \(n.2^n+\left(-2\right)^n=2^n\left(n+\left(-1\right)^n\right)\)
Mà \(2^n⋮̸5\Rightarrow n+\left(-1\right)^n⋮5\)
TH1: \(n=2k\Rightarrow2k+1⋮5\Rightarrow2k+1=5\left(2m+1\right)\Rightarrow k=5m+2\)
\(\Rightarrow n=10m+4\)
TH2: \(n=2k+1\Rightarrow2k+1-1⋮5\Rightarrow2k⋮5\Rightarrow k=5t\Rightarrow n=10t+1\)
Vậy với \(\left[{}\begin{matrix}n=10k+4\\n=10k+1\end{matrix}\right.\) (\(k\in N\)) thì số đã cho chia hết cho 5
Áp dụng bđt sau : \(\frac{a^n+b^n}{2}\ge\frac{\left(a+b\right)^n}{2}\)ta được
\(\frac{1}{\left(1+a\right)^n}+\frac{1}{\left(1+b\right)^n}\ge2\left(\frac{\frac{1}{1+a}+\frac{1}{1+b}}{2}\right)^n\)
Ta đi c/m bđt phụ : Với a,b > 1 thì \(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)(1)
Bđt (1) \(\Leftrightarrow\frac{\left(a+b\right)+2}{1+\left(a+b\right)+ab}\ge\frac{2}{1+\sqrt{ab}}\)(Quy đồng VT)
\(\Leftrightarrow\left(a+b\right)+2+\left(a+b\right)\sqrt{ab}+2\sqrt{ab}\ge2+2\left(a+b\right)+2ab\)
\(\Leftrightarrow\left(a+b\right)\left(\sqrt{ab}-1\right)+2\sqrt{ab}\left(1-\sqrt{ab}\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{ab}-1\right)\left(a+b-2\sqrt{ab}\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{ab}-1\right)\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(Luôn đúng vs mọi a;b > 1)
Áp dụng bđt (1) được
\(\frac{1}{\left(1+a\right)^n}+\frac{1}{\left(1+b\right)^n}\ge2\left(\frac{\frac{1}{1+a}+\frac{1}{1+b}}{2}\right)^n\ge2\left(\frac{1}{1+\sqrt{ab}}\right)^n=\frac{2}{\left(1+\sqrt{ab}\right)^n}\)
Dấu "=" xảy ra tại a = b
Áp dụng buổi thức đơn ta được
\(\sqrt[a]{b}\)\(a+b:2\)\(>\)ta được
\(\frac{1}{1+A}\)+ \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
\(\frac{A+B=2}{ }\)
\(\frac{A+B=2}{1+A+B}\)
\(VẬY\)Nếu bạn làm tắt theo mik thì
Mik chưa ra đáp án được vì
\(B\sqrt[A]{B}\)CHỖ B BỊ LỖI
MAGICPENCIL,HÃY LUÔN :-)
Có các phần tử của A là bội của 6
Các phần tử của B là bội của 15
Các phần tử của C là bội của 30
mà [6;15]=30
=> Những phần tử vừa chia hết cho 6; vừa chia hết cho 15 thì sẽ chia hết cho 30
Hay \(C=A\cap B\)
a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
\(\Rightarrowđpcm\)
b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+31n+5-6n^2-7n+5\)
\(=24n+10=2\left(12n+5\right)⋮2\)
\(\Rightarrowđpcm\)
bài toán này cần phải có đk của "n"