CM x(x+1)(x+2)(x+3)+1>=0 cho abc=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Áp dụng BĐT Cauchy cho các số dương ta có:
\(\frac{1}{x}+\frac{x}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{y}+\frac{y}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{z}+\frac{z}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
Cộng theo vế các BĐT vừa thu được ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{4}\geq 3\)
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 3-\frac{x+y+z}{4}\geq 3-\frac{6}{4}\) (do \(x+y+z\leq 6\) )
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=2\)
Bài 4:
Áp dụng BĐT Cauchy cho 3 số dương:
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq 3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\sqrt[3]{1}=3\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z\)
Ta cần chứng minh
\(x+\frac{27}{\left(x+3\right)^3}\ge1\)
\(\Leftrightarrow x+\frac{27}{\left(x+3\right)^3}-1\ge0\)
\(\Leftrightarrow x^4+8x^3+18x^2\ge0\)
Theo đề bài ta có: \(x\ge0\Rightarrow\left\{\begin{matrix}x^4\ge0\\8x^3\ge0\\18x^2\ge0\end{matrix}\right.\)
\(\Rightarrow x^4+8x^3+18x^2\ge0\)
Vậy ta có điều phải chứng minh. Dấu = xảy ra khi x = 0
2/ \(P=x+\frac{2}{2x+1}\)
\(\Leftrightarrow2P=2x+\frac{4}{2x+1}=2x+1+\frac{4}{2x+1}-1\)
\(\ge4-1=3\)
\(\Rightarrow P\ge\frac{3}{2}\)
Vậy GTNN là \(\frac{3}{2}\) đạt được khi x = \(\frac{1}{2}\)
A=(x+1)(x+2)(x+3)(x+4)+1
= [(x+1)(x+4)] [(x+2)(x+3)]+1
=(x^2+5x+5)(x^2+5x+6)+1
Đặt t =x^2+5x+5
=> A=t(t+1)+1=t^2+t+1 = (t+1)^2 >= 0 (đpcm)
Bài 1:
Chiều thuận:\(x^2+y^2\vdots 3\Rightarrow x\vdots 3; y\vdots 3\)
Giả sử cả \(x\not\vdots 3, y\not\vdots 3\). Ta biết rằng một số chính phương khi chia 3 thì dư $0$ hoặc $1$.
Do đó nếu \(x\not\vdots 3, y\not\vdots 3\Rightarrow x^2\equiv 1\pmod 3; y^2\equiv 1\pmod 3\)
\(\Rightarrow x^2+y^2\equiv 2\pmod 3\) (trái với giả thiết )
Suy ra ít nhất một trong 2 số $x,y$ chia hết cho $3$
Giả sử $x\vdots 3$ \(\Rightarrow x^2\vdots 3\). Mà \(x^2+y^2\vdots 3\Rightarrow y^2\vdots 3\Rightarrow y\vdots 3\)
Vậy \(x^2+y^2\vdots 3\Rightarrow x,y\vdots 3\)
Chiều đảo:
Ta thấy với \(x\vdots 3, y\vdots 3\Rightarrow x^2\vdots 3; y^2\vdots 3\Rightarrow x^2+y^2\vdots 3\) (đpcm)
Vậy ta có đpcm.
Bài 2: > chứ không \(\geq \) nhé, vì khi \(a=b=c=\frac{1}{2}\) thì cả 3 BĐT đều đúng.
Phản chứng, giả sử cả 3 BĐT đều đúng
\(\Rightarrow \left\{\begin{matrix} a(1-b)> \frac{1}{4}\\ b(1-c)> \frac{1}{4}\\ c(1-a)>\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow a(1-a)b(1-b)c(1-c)> \frac{1}{4^3}(*)\)
Theo BĐT AM-GM thì:
\(a(1-a)\leq \left(\frac{a+1-a}{2}\right)^2=\frac{1}{4}\)
\(b(1-b)\leq \left(\frac{b+1-b}{2}\right)^2=\frac{1}{4}\)
\(c(1-c)\leq \left(\frac{c+1-c}{2}\right)^2=\frac{1}{4}\)
\(\Rightarrow abc(1-a)(1-b)(1-c)\leq \frac{1}{4^3}\) (mâu thuẫn với $(*)$)
Do đó điều giả sử là sai, tức là trong 3 BĐT trên có ít nhất một BĐT đúng.
Cho hỏi cái "Cho abc=1" để làm gì thế:v?
Ta có: \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]+1\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)\(=\left(x^2+3x+1-1\right)\left(x^2+3x+1+1\right)+1\)
\(=\left(x^2+3x+1\right)^2-1^2+1=\left(x^2+3x+1\right)^2\)
Ta thấy: \(\left(x^2+3x+1\right)^2\ge0\) (Với mọi x)
\(\Rightarrow x\left(x+1\right)\left(x+2\right)\left(x+3\right)\ge0\)
sorry ko có