Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Áp dụng BĐT Cauchy cho các số dương ta có:
\(\frac{1}{x}+\frac{x}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{y}+\frac{y}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{z}+\frac{z}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
Cộng theo vế các BĐT vừa thu được ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{4}\geq 3\)
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 3-\frac{x+y+z}{4}\geq 3-\frac{6}{4}\) (do \(x+y+z\leq 6\) )
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=2\)
Bài 4:
Áp dụng BĐT Cauchy cho 3 số dương:
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq 3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\sqrt[3]{1}=3\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z\)
Bạn sửa lại điều kiện thành: 0<x<1 nhé :)
Đặt \(A=\frac{2}{1-x}+\frac{1}{x}\)
Áp dụng dụng bđt Bunhiacopxki, ta có :
\(A=\left[\left(\sqrt{\frac{2}{1-x}}\right)^2+\left(\sqrt{\frac{1}{x}}\right)^2\right]\left[\left(\sqrt{1-x}\right)^2+\left(\sqrt{x}\right)^2\right]\ge\left[\sqrt{\frac{2}{1-x}.\left(1-x\right)}+\sqrt{\frac{1}{x}.x}\right]^2\)
\(\Rightarrow A\ge\left(\sqrt{2}+1\right)^2=3+2\sqrt{2}\)
Bài này mình có áp dụng một chút phần căn thức lớp 9 :
- Nếu \(x\ge0\) thì \(x=\left(\sqrt{x}\right)^2\)
- \(\sqrt{x}.\sqrt{y}=\sqrt{xy}\)với \(x,y\ge0\)
điều kiền phải là : 0 < x < 1 . đặt \(P=\frac{2}{1-x}+\frac{1}{x}.\)
ta có : \(\frac{2}{1-x}=\frac{2-2x+2x}{1-x}=2+\frac{2x}{1-x}.\); \(\frac{1}{x}=\frac{x+1-x}{x}=1+\frac{1-x}{x}.\)
\(P=\frac{2}{1-x}+\frac{1}{x}=3+\frac{2x}{1-x}+\frac{1-x}{x}.\left(1\right).\)
Áp dụng BĐT Cô si cho hai số dương \(\frac{2x}{1-x}\)và \(\frac{1-x}{x}.\)ta được : \(\frac{2x}{1-x}+\frac{1-x}{x}\ge2\sqrt{\frac{2x.\left(1-x\right)}{\left(1-x\right).x}}=2\sqrt{2}.\)
Thay vào (1) ta được : \(P\ge3+2\sqrt{2}.\)dấu " =" xẩy ra khi \(x=\sqrt{2}-1\)
A=(x+1)(x+2)(x+3)(x+4)+1
= [(x+1)(x+4)] [(x+2)(x+3)]+1
=(x^2+5x+5)(x^2+5x+6)+1
Đặt t =x^2+5x+5
=> A=t(t+1)+1=t^2+t+1 = (t+1)^2 >= 0 (đpcm)
a/ \(x^2-6x+10=x^2-2.x.3+3^2+1=\left(x-3\right)^2+1\)
Với mọi x ta có :
\(\left(x-3\right)^2\ge0\)
\(\Leftrightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-6x+10>0\)
b/ \(x^2-4x+7=x^2-2.x.2+2^2+3=\left(x-2\right)^2+3\)
Với mọi x ta có :
\(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x-2\right)^2+3\ge3\)
\(\Leftrightarrow x^2-4x+7\ge3\left(đpcm\right)\)
c/ \(x^2+x+1=x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Với mọi x ta có :
\(\left(x+\dfrac{1}{2}\right)^2\ge0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(\Leftrightarrow x^2+x+1>0\left(đpcm\right)\)
d/ \(x^2+y^2+4x-6y+15=\left(x^2+4x+2^2\right)+\left(y^2-6y+3^2\right)+2=\left(x+2\right)^2+\left(y-3\right)^2+2\)
Với mọi x,y ta có :
\(\left\{{}\begin{matrix}\left(x+2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2+2\ge0\)
\(\Leftrightarrow x^2+y^2+4x-6y+15>0\left(đpcm\right)\)
2/ Ta có :
\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)
Vậy \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\left(đpcm\right)\)
3/ \(x^2+y^2=x^2+y^2+2xy-2xy=\left(x+y\right)^2-2xy\)
Mà \(x+y=7;xy=-3\)
\(\Leftrightarrow x^2+y^2=7^2-2.\left(-3\right)=49+6=55\)
2.
Ta có hằng đẳng thức : \(\left(a-b\right)^2=a^2-2ab+b^2\left(1\right)\)
Lại có \(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\Rightarrow\left(a+b\right)^2-4ab=a^2+2ab-4ab+b^2\)
\(\Leftrightarrow\left(a+b\right)^2-4ab=a^2-2ab+b^2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(a-b\right)^2=\left(a+b\right)^2-4ab\)( đpcm )
3.
Ta có hằng đẳng thức \(\left(x+y\right)^2=x^2+2xy+y^2\)
\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy\)
Thay \(x+y=7\)và \(xy=-3\)vào ta được :
\(x^2+y^2=7^2-2\left(-3\right)\)
\(\Leftrightarrow x^2+y^2=49+6=55\)
Vậy ...
1.
a) Đặt \(A=x^2-6x+10\)
\(A=\left(x^2-6x+9\right)+1\)
\(A=\left(x-3\right)^2+1\)
Mà \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow A\ge1>0\)
Vậy ...
b) Đặt \(B=x^2-4x+7\)
\(B=\left(x^2-4x+4\right)+3\)
\(B=\left(x-2\right)^2+3\)
Mà \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow B\ge3\)
Vậy ...
Cho hỏi cái "Cho abc=1" để làm gì thế:v?
Ta có: \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]+1\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)\(=\left(x^2+3x+1-1\right)\left(x^2+3x+1+1\right)+1\)
\(=\left(x^2+3x+1\right)^2-1^2+1=\left(x^2+3x+1\right)^2\)
Ta thấy: \(\left(x^2+3x+1\right)^2\ge0\) (Với mọi x)
\(\Rightarrow x\left(x+1\right)\left(x+2\right)\left(x+3\right)\ge0\)
sorry ko có