K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AM=BM(gt)

Do đó : tam giác AME=tam giác CME (c.g.c)

Suy ra MA =BC(2 cạnh tương ứng )(1)

góc MAE = góc CBE (2 góc tương ứng )

=> MA // BC(3)

+)Xét tam giác ADN và tam giác CDB có:

BD=DN(gt)

góc ADN = góc CDB(đđ)

AD=DC(gt)

Do đó : tam giác ADN = tam giác CDB (c.g.c)

Suy ra AN = BC(2 cạnh tương ứng )(2)

góc NAB = góc BCD (2 góc tương ứng )

=> AN//BC(4)

Từ (3) và(4) suy ra 3 điểm M , A , N thẳng hàng

=> MN=MA+NA

Từ (1) và(2) suy ra BC=MA=NA

=> BC =MA+NA2MA+NA2=MN2MN2

Hay MN = 2BC (ĐPCM)

31 tháng 12 2022

a: Xét ΔABC có AM/AB=AN/AC

nên MN//BC và MN=BC/2

=>BC=5cm

b: Xét ΔMBC có 
MK/MB=MI/MC

nên KI//BC và KI=BC/2

=>MN//KI và MN=KI

=>MNIK là hình bình hành

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IMa. Tính góc BACb.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau3)Cho tam giác ABC. Ở...
Đọc tiếp

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IM
a. Tính góc BAC
b.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH

2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau

3)Cho tam giác ABC. Ở phía ngoài tam giác ấy vẽ tam giác đều ACE. Trên nửa mặt phẳng chứa C có bờ AB, vẽ tam giác đều ABD. Gọi H, K, M theo thứ tự là trung điểm của AB, AE, CD. Chứng minh rằng HKM là tam giác đều

4)Cho điểm M nằm trên đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Chứng minh rằng EF=1/2CD

0

Bài 2: 

Kẻ OH⊥AB tại H và OK⊥CD tại K

Ta có: OH⊥AB(gt)

AB//CD(gt)

Do đó: OH⊥CD(Định lí 2 từ vuông góc tới song song)

mà OK⊥CD(gt)

và OH và OK có điểm chung là O

nên O,H,K thẳng hàng

Xét ΔOAB có OA=OB(=R)

nên ΔOAB cân tại O(Định nghĩa tam giác cân)

Ta có: ΔOAB cân tại O(cmt)

mà OH là đường cao ứng với cạnh đáy AB(gt)

nên OH là đường phân giác ứng với cạnh AB(Định lí tam giác cân)

Suy ra: \(\widehat{AOH}=\widehat{BOH}\)

hay \(\widehat{AOK}=\widehat{BOK}\)

Xét ΔOCD có OC=OD(=R)

nên ΔOCD cân tại O(Định nghĩa tam giác cân)

Ta có: ΔOCD cân tại O(cmt)

mà OK là đường cao ứng với cạnh đáy CD(Gt)

nên OK là đường phân giác ứng với cạnh CD(Định lí tam giác cân)

hay \(\widehat{COK}=\widehat{DOK}\)

Ta có: \(\widehat{AOK}=\widehat{BOK}\)(cmt)

\(\widehat{COK}=\widehat{DOK}\)(cmt)

Do đó: \(\widehat{AOK}-\widehat{COK}=\widehat{BOK}-\widehat{DOK}\)

\(\Leftrightarrow\widehat{AOC}=\widehat{BOD}\)

\(\Leftrightarrow sđ\stackrel\frown{AC}=sđ\stackrel\frown{BD}\)

hay \(\stackrel\frown{AC}=\stackrel\frown{BD}\)(đpcm)

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm...
Đọc tiếp

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.

2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.

3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.

4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.

5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.

0