K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2023

Để : \(\dfrac{2}{n^2+1}\in Z\)

Ta có : \(\dfrac{2n}{n^2+1}=\dfrac{2n}{n^2}+2n\)

 

\(\Leftrightarrow\dfrac{2n}{n^2}=\dfrac{2}{n}\in Z\)

\(\Leftrightarrow n\in U\left(2\right)\)

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

a: Ta có: \(2n+1⋮n+2\)

\(\Leftrightarrow2n+4-3⋮n+2\)

\(\Leftrightarrow n+2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{-1;-3;1;-5\right\}\)

b: Để B là số nguyên thì \(n+3⋮n-2\)

\(\Leftrightarrow n-2+5⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{3;1;7;-3\right\}\)

c: Để C là số nguyên thì \(3n+7⋮n-1\)

\(\Leftrightarrow3n-3+10⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

hay \(n\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)

17 tháng 12 2022

Để A nguyên thì 2n-2+4 chia hết cho n-1

=>\(n-1\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(n\in\left\{2;0;3;-1;5;-3\right\}\)

\(P=\dfrac{n^3+3n^2+2n}{6}+\dfrac{2n+1}{1-2n}\)

Vì n^3+3n^2+2n=n(n+1)(n+2) là tích của 3 số liên tiếp

nên n^3+3n^2+2n chia hết cho 3!=6

=>Để P nguyên thì 2n+1/1-2n nguyên

=>2n+1 chia hết cho 1-2n

=>2n+1 chia hết cho 2n-1

=>2n-1+2 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;2;-2\right\}\)

=>\(n\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2}\right\}\)

17 tháng 11 2023

ĐKXĐ: \(n\notin\left\{1;-1\right\}\)

Để \(\dfrac{2n-1}{n^2-1}\in Z\) thì \(2n-1⋮n^2-1\)

=>\(\left(2n-1\right)\left(2n+1\right)⋮n^2-1\)

=>\(4n^2-1⋮n^2-1\)

=>\(4n^2-4+3⋮n^2-1\)

=>\(n^2-1\inƯ\left(3\right)\)

=>\(n^2-1\in\left\{1;-1;3;-3\right\}\)

=>\(n^2\in\left\{2;0;4;-2\right\}\)

mà n là số nguyên

nên \(n^2\in\left\{0;4\right\}\)

=>\(n\in\left\{0;2;-2\right\}\)

Thử lại, ta thấy chỉ có \(n\in\left\{0;2\right\}\) thỏa mãn

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

18 tháng 6 2019

\(n^4+2n^3+2n^2+2n+1=\left(n^4+2n^3+n^2\right)+\left(n^2+2n+1\right)=\left(n^2+1\right)\left(n+1\right)^2\)

18 tháng 6 2019

Voi n=0 

=>n4+2n3+2n2+2n+1=1=12

30 tháng 11 2021

Tham khảo:
 

Ta có: 2^n+1;2^n;2^n-1  là 3 số tự nhiên liên tiếp

=>một trong 3 số trên chia hết cho 3

mà 2^n+1 là số nguyên tố(n>2)=>2^n+1 ko chia hết cho 3

mặt khác: 2^n ko chia hết cho 3

=>2^n-1 chia hết cho 3

CHÚC CẬU HỌC TỐT VÀ ĐẠT KẾT QUẢ CAO!

 

30 tháng 11 2021

Cảm ơn bạn nha :3

18 tháng 8 2018

Xột số   A = (2n – 1)2n(2n + 1)

A là tích của 3 số tự nhiên liờn tiệp nên A   ⋮   3  

Mặt khỏc 2n – 1 là số nguyên tố   ( theo giả thiết )

                2n  không chia hết cho 3

Vậy 2n + 1 phải chia hết cho 3 ⇒  2n + 1 là hợp số.

12 tháng 3 2021

Ta có:

\(n^5+n^4-2n^3-2n^2+1=p^k\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\)

Từ gt \(\Rightarrow n,k\ge2\)

Ta có:

\(\left\{{}\begin{matrix}n^3-n-1>1;n^2+n-1>1,\forall n\ge2\\\left(n^3-n-1\right)-\left(n^2+n-1\right)=\left(n+1\right)n\left(n-2\right)\ge0,\forall n\ge2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}n^3-n-1=p^r\\n^2+n-1=p^s\end{matrix}\right.\) trong đó \(\left\{{}\begin{matrix}r\ge s>0\\r+s=k\end{matrix}\right.\)

\(\Rightarrow n^3-n-1⋮n^2+n-1\)

\(\Rightarrow n^3-n-1-\left(n-1\right)\left(n^2+n-1\right)⋮n^2+n-1\)

\(\Rightarrow n-2⋮n^2+n-1\)       (1)

Mặt khác:

\(\left(n^2+n-1\right)-\left(n-2\right)=n^2+1>0,\forall n\)

\(\Rightarrow n^2+n-1>n-2\ge0,\forall n\ge2\) (2)

Từ (1) và (2) => n=2 => \(p^k=25\Rightarrow\left\{{}\begin{matrix}p=5\\k=2\end{matrix}\right.\)

Vậy bộ số (n,k,p)=(2,2,5)

12 tháng 3 2021

\(...\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\).

Do đó \(\left\{{}\begin{matrix}n^2+n-1=p^v\\n^3-n-1=p^u\end{matrix}\right.\left(v,u\in N;v+u=k\right)\).

+) Với n = 2 ta có \(p^k=25=5^2\Leftrightarrow p=5;k=2\) 

+) Với n > 2 ta có \(n^3-n-1>n^2+n-1\Rightarrow v>u\Rightarrow n^3-n-1⋮n^2+n-1\)

\(\Rightarrow\left(n^2+n-1\right)\left(n-1\right)+n-2⋮n^2+n-1\)

\(\Rightarrow n-2⋮n^2+n-1\)

\(\Rightarrow\left(n-2\right)\left(n+3\right)⋮n^2+n-1\)

\(\Rightarrow6⋮n^2+n-1\).

Không tồn tại n > 2 thoả mãn

Vậy...