K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2023

Để : \(\dfrac{2}{n^2+1}\in Z\)

Ta có : \(\dfrac{2n}{n^2+1}=\dfrac{2n}{n^2}+2n\)

 

\(\Leftrightarrow\dfrac{2n}{n^2}=\dfrac{2}{n}\in Z\)

\(\Leftrightarrow n\in U\left(2\right)\)

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

22 tháng 11 2018

a, Gọi d là ƯCLN  của n + 2 và 2n + 3

\(\Rightarrow n+2⋮d\) 

\(\Rightarrow2\left(n+2\right)⋮d\)

\(\Rightarrow2n+4⋮d\)

Mà \(2n+3⋮d\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\) mà d là ƯCLN \(\Rightarrow d=1\)

=> 2 số n + 2 và 2n + 3 là 2 số nguyên tố cùng nhau

b, Gọi d là ƯCLN của 3n + 1 và 2n + 1

\(3n+1⋮d\) và \(2n+1⋮d\)

\(\Rightarrow2\left(3n+1\right)⋮d\)và \(3\left(2n+1\right)⋮d\) 

\(\Rightarrow6n+2⋮d\) và \(6n+3⋮d\)

\(\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\)mà d là ƯCLN => d = 1

=> 2 số 3n +1 và 2n + 1 là hai số nguyên tố cùng nhau

11 tháng 1 2019

a) Vì: m là số nguyên tố 

=> m>1

=> 7m>7 và chia hết cho 7 (do 7 chia hết cho 7)

=> Là hợp số 

=> Vô lí

Vậy ko có SNT m nào t/m.

b) Vì: n thuộc N hay n là SNT cx ok nhá

=> n-2<n^2+4

Vì SNT đc phân tích thành 1 và chính nó

=> n-2=1

=> n=3

c) Giải thích tương tự câu b

=> Tìm đc n=2

=> m=1.7=7

d) Phân tích thành nhân tử r lm giống như câu b,c thoy

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Lời giải:
a. 

$2n^2+n-6=n(2n+1)-6\vdots 2n+1$

$\Rightarrow 6\vdots 2n+1$

$\Rightarrow 2n+1$ là ước của $6$

Mà $2n+1$ lẻ nên $2n+1\in\left\{\pm 1; \pm 3\right\}$

$\Rightarrow n\in\left\{0; -1; 1; -2\right\}$

b.

Vì $p$ là số nguyên tố lớn hơn 3 nên $p=3k+1$ hoặc $p=3k+2$

Với $p=3k+1$ thì $p^2-1=(p-1)(p+1)=3k(3k+2)\vdots 3$

Với $p=3k+2$ thì $p^2-1=(p-1)(p+1)=(3k+1)(3k+3)=3(3k+1)(k+1)\vdots 3$

Suy ra $p^2-1$ luôn chia hết cho $3$ (*)

Mặt khác:

$p$ lẻ nên $p=2k+1$. Khi đó: $p^2-1=(p-1)(p+1)=2k(2k+2)$

$=4k(k+1)\vdots 8$ (**) do $k(k+1)\vdots 2$ (tích 2 số nguyên liên tiếp)

Từ (*) ; (**) suy ra $p^2-1\vdots (3.8)$ hay $p^2-1\vdots 24$.

3 tháng 5 2016

sao ma kho 

27 tháng 1 2022

11 tháng 7 2021

Để C nguyên khi

 \(2n+1⋮n-2\Leftrightarrow2\left(n-2\right)+5⋮n-2\)

\(\Leftrightarrow5⋮n-2\Rightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

n - 21-15-5
n317-3
25 tháng 11 2015

Đặt ƯCLN(2n+1; 2n+3) = d

=> (2n + 3) - (2n + 1) chia hết cho d

=> 2 chia hết cho d

=> d \(\in\) Ư(2) = {1; 2}

Mà 2n + 1 và 2n + 3 là hai số lẻ nên ước chung lớn nhất của chúng ko thể là 2.

Vậy d = 1 nên 2n + 1 và 2n + 3 nguyên tố cùng nhau