chứng minh rằng :
\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b+2}{36}+\dfrac{c+3}{48}\ge3\sqrt[3]{\dfrac{a^3\left(b+2\right)\left(c+3\right)}{1728\left(b+2\right)\left(c+3\right)}}=\dfrac{a}{4}\)
Tương tự: \(\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c+2}{36}+\dfrac{a+3}{48}\ge\dfrac{b}{4}\)
\(\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}+\dfrac{a+2}{36}+\dfrac{b+3}{48}\ge\dfrac{c}{4}\)
Cộng vế:
\(P+\dfrac{7\left(a+b+c\right)}{144}+\dfrac{17}{48}\ge\dfrac{a+b+c}{4}\)
\(\Rightarrow P\ge\dfrac{29}{144}\left(a+b+c\right)-\dfrac{17}{48}\ge\dfrac{29}{144}.3\sqrt[3]{abc}-\dfrac{17}{48}=\dfrac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)
\(=\left[\left(a-b\right)+\left(b-c\right)\right]^3-3\left(a-b\right)\left(b-c\right)\left(a-b+b-c\right)+\left(c-a\right)^3\)
\(=\left(a-c\right)^3+3\left(a-b\right)\left(b-c\right)\left(c-a\right)+\left(c-a\right)^3\)
\(=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Vậy việc ta cần làm là chứng minh \(\left(a-b\right)\left(b-c\right)\left(c-a\right)⋮27\)
Do vai trò của a, b, c là hoàn toàn tương tự, ta chỉ cần xét các trường hợp sau:
- Nếu a chia hết cho 3; b chia 3 dư 1; c chia 3 dư 2 \(\Rightarrow VT=\left(a+b+c\right)⋮3\)
\(\left(a-b\right)\) chia 3 dư 2; \(\left(b-c\right)\) chia 3 dư 2; \(\left(c-a\right)\) chia 3 dư 2 \(\Rightarrow VP=\left(a-b\right)\left(b-c\right)\left(c-a\right)⋮̸3\Rightarrow VT\ne VP\) (vô lý) \(\Rightarrow\) loại
- Nếu a và b cùng số dư khi chia 3 và khác số dư của c khi chia 3 \(\Rightarrow\left(a-b\right)⋮3\)
\(\Rightarrow VP=\left(a-b\right)\left(b-c\right)\left(c-a\right)⋮3\)
Mà \(VT=\left(a+b+c\right)⋮̸3\Rightarrow VT\ne VP\Rightarrow\) loại
Vậy \(a,b,c\) phải cùng số dư khi chia 3
\(\Rightarrow\left\{{}\begin{matrix}a-b⋮3\\b-c⋮3\\c-a⋮3\end{matrix}\right.\) \(\Rightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)⋮27\) (đpcm)
Xét vế trái:
\(2\left(a^3+b^3+c^3-3abc\right)\)
\(=2\left[\left(a^3+b^3\right)+c^3-3abc\right]\)
\(=2\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\right]\)
\(=2\left\{\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]\right\}\)
\(=2\left\{\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\right\}\)
\(=2\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc-c^2-3ab\right)\)
\(=2\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)
\(=\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]\)
\(=\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\left(đpcm\right)\)
Chúc bạn học tốt!
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b\right)-3abc\)\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(\Rightarrow2\left(a^3+b^3+c^3-3abc\right)=\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\)\(\Rightarrow2\left(a^3+b^3+c^3-3abc\right)=\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\left(đpcm\right)\)
Đặt \(\left\{{}\begin{matrix}a^2-bc=x\\b^2-ca=y\\c^2-ab=z\end{matrix}\right.\)
\(\Rightarrow x+y+z\ge0\)
\(\)Đẳng thức cần c/m trở thành: \(x^3+y^3+z^3\ge3xyz\left(1\right)\)
Áp dụng Bất đẳng thức AM-GM cho 3 số x,y,z, ta có:
\(x^3+y^3+z^3\ge3\sqrt[3]{x^3.y^3.z^3}=3xyz\)
=> Đẳng thức (1) luôn đúng với mọi x
Dấu = xảy ra khi: x=y=z hay \(a^2-bc=b^2-ca=c^2-ab\)
và \(a^2+b^2+c^2-\left(ab+bc+ca\right)=0\)\(\Rightarrow a=b=c\)
\(3=a+b+c\ge3\sqrt[3]{abc}\)\(\Leftrightarrow\)\(abc\le1\)
\(VT=\frac{a^3\left(a+1\right)+b^3\left(b+1\right)+c^3\left(c+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}=\frac{a^4+b^4+c^4+a^3+b^3+c^3}{a+b+c+ab+bc+ca+abc+1}\)
\(\ge\frac{\frac{\left(a^2+b^2+c^2\right)^2}{3}+\frac{\left(a^2+b^2+c^2\right)^2}{a+b+c}}{\frac{\left(a+b+c\right)^2}{3}+5}=\frac{\frac{\frac{\left(a+b+c\right)^4}{9}}{3}+\frac{\frac{\left(a+b+c\right)^4}{9}}{3}}{8}\)
\(=\frac{\frac{\frac{3^4}{9}}{3}}{4}=\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
sao lại có hai cái vậy bạn mik làm 1 cái thôi nhá
Đặt : \(\left(a-b\right)=x;\left(b-c\right)=y;\left(c-a\right)=z\)
VT-VP : \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
\(=x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=[\left(x+y\right)^3+z^3]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz+yz+z^2-3xy\right)\)
mà : \(x+y+z=0\left(a-b+b-c+c-a=0\right)\)
\(\Rightarrow VT-VP=0\)
\(\Rightarrowđpcm\)