K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2023

sao lại có hai cái vậy bạn mik làm 1 cái thôi nhá

Đặt : \(\left(a-b\right)=x;\left(b-c\right)=y;\left(c-a\right)=z\)

VT-VP : \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

\(=x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=[\left(x+y\right)^3+z^3]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz+yz+z^2-3xy\right)\)

mà : \(x+y+z=0\left(a-b+b-c+c-a=0\right)\)

\(\Rightarrow VT-VP=0\)

\(\Rightarrowđpcm\)

25 tháng 8 2021

(a+b+c)^3=((a+b)+c)^3=(a+b)^3+c^3+3(a+b)c(a+b+c)
=a^3+b^3+3ab(a+b)+c^3+3(a+b)c(a+b+c)
=a^3+b^3+c^3+3(a+b)(ab+c(a+b+c))
=a^3+b^3+c^3+3(a+b)(ab+ac+bc+c^2)
=a^3+b^3+c^3+3(a+b)(a+c)(b+c)

16 tháng 8 2021

cái đề sai r

17 tháng 8 2021

Cảm ơn bạn nhé

 

13 tháng 1 2018

Xét vế trái:

\(2\left(a^3+b^3+c^3-3abc\right)\)

\(=2\left[\left(a^3+b^3\right)+c^3-3abc\right]\)

\(=2\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\right]\)

\(=2\left\{\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]\right\}\)

\(=2\left\{\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\right\}\)

\(=2\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc-c^2-3ab\right)\)

\(=2\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)

\(=\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]\)

\(=\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\left(đpcm\right)\)

Chúc bạn học tốt!

13 tháng 1 2018

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b\right)-3abc\)\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(\Rightarrow2\left(a^3+b^3+c^3-3abc\right)=\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\)\(\Rightarrow2\left(a^3+b^3+c^3-3abc\right)=\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\left(đpcm\right)\)

2 tháng 2 2021

Đề hay thật sự, cho x,y,z nhưng chứng minh a,b,c :vundefinedundefined

3 tháng 2 2021

mình ghi nhầm thui với lại bạn này gửi ngược ảnh, mình dùng máy tính không xem được

 

22 tháng 8 2023

Để chứng minh hằng đẳng thức a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a) = (a+b+c)^3, ta sẽ sử dụng công thức khai triển đa thức.

Theo công thức khai triển đa thức, ta có:

(a+b+c)^3 = a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a)

Vậy, hằng đẳng thức được chứng minh.