K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2015

a) trieu dang làm rồi

b)   A= 1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
A = 1 - 1/2 + 1/2- 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256 - 1/256 - 1/512
A = 1 - 1/512
A = 511/512

29 tháng 6 2015

a, \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{10100}\)

=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{100.101}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{100}-\frac{1}{101}\)

=\(1-\frac{1}{101}\)

=\(\frac{100}{101}\)

b,\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{512}\)

=\(\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+...+\left(\frac{1}{256}-\frac{1}{512}\right)\)

=\(1-\frac{1}{512}\)

=\(\frac{511}{512}\)

29 tháng 6 2015

\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}+\frac{1}{10100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}\)

a) đề sai

28 tháng 6 2015

    1/2 + 1/6 + 1/12 + ... + 1/9900 + 1/10100

= 1/1.2 + 1/2.3 + 1/3.4 +... +1/99.100 + 1/100.101

= 1/1 - 1/2 + 1/2 + 1/3 - 1/3 + 1/4 +... + 1/99 - 1 / 100 + 1/100 - 1/101

= 1/1 - 1/101

= 100 /101

28 tháng 6 2015

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{9900}+\frac{1}{10100}\)

=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{99.100}+\frac{1}{100.101}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)

=\(1-\frac{1}{101}\)

=\(\frac{100}{101}\)

28 tháng 6 2015

Mik trả lời ở bài dưới rồi đó.

28 tháng 6 2015
1/2 + 1/6 + 1/12 + ... + 1/9900 + 1/10100 = 1/1.2 + 1/2.3 + 1/3.4 +... +1/99.100 + 1/100.101 = 1/1 - 1/2 + 1/2 + 1/3 - 1/3 + 1/4 +... + 1/99 - 1 / 100 + 1/100 - 1/101 = 1/1 - 1/101 = 100 /101
10 tháng 9 2020

Ta có: \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}+\frac{1}{10100}\)

     \(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}+\frac{1}{100.101}\)

     \(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)

     \(=1-\frac{1}{101}\)

     \(=\frac{100}{101}\)

10 tháng 9 2020

Tương đương \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}+\frac{1}{100.101}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)

TH
Thầy Hùng Olm
Manager VIP
13 tháng 4 2023

A = 1+ 1+1+ ...+ 1 +(\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}+\dfrac{1}{10100}\))

=(1+1+1+...+1)+ (\(\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+...+\dfrac{1}{99x100}+\dfrac{1}{100x101}\))

=100 +\(1-\dfrac{1}{101}=100-\dfrac{100}{101}=\dfrac{10000}{101}\)

13 tháng 4 2023

1+1/2+1+1/6+1+1/12+...+1+1/9900

=1+1/1*2+1+1/2.3+....+1+1/99*100

=100*1+1-1/2+1/2-1/3+1/3-1/4...+1/99-1/100

=100+99/100

=10099/100

6 tháng 12 2017

1/1x2+1/2x3+1/3x4+...+1/99x100+1/100x101

=1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100+1/100-1/101

=1/1-1/101

=100/101

26 tháng 8 2016

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}\)

\(=1-\frac{1}{5}\)

\(=\frac{4}{5}\)

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

26 tháng 8 2016

Từng ý một nhanh hơn nhá

13 tháng 7 2016

Đặt A=1+2+22+23+...+2100

suy ra 2A=2+22+23+...+2100

suy ra 2A-A=(2+22+23+...+2101)-(1+2+22+23+...+2100)

                 =2101-1

Vậy 1+2+22+23+...+2100=2101-1

13 tháng 7 2016

 A=1+2+2^2+2^3+...+2^100

2A=2+22+23+24+...+2101

2A-A=2101-1

Vậy A= 2101-1