Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{10100}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{100.101}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{100}-\frac{1}{101}\)
=\(1-\frac{1}{101}\)
=\(\frac{100}{101}\)
b,\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{512}\)
=\(\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+...+\left(\frac{1}{256}-\frac{1}{512}\right)\)
=\(1-\frac{1}{512}\)
=\(\frac{511}{512}\)
1/2 + 1/6 + 1/12 + ... + 1/9900 + 1/10100
= 1/1.2 + 1/2.3 + 1/3.4 +... +1/99.100 + 1/100.101
= 1/1 - 1/2 + 1/2 + 1/3 - 1/3 + 1/4 +... + 1/99 - 1 / 100 + 1/100 - 1/101
= 1/1 - 1/101
= 100 /101
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{9900}+\frac{1}{10100}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{99.100}+\frac{1}{100.101}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)
=\(1-\frac{1}{101}\)
=\(\frac{100}{101}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}\)
\(=1-\frac{1}{5}\)
\(=\frac{4}{5}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^9}\\ 2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^8}\\ 2A-A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^8}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)\\ A=1-\dfrac{1}{2^9}=\dfrac{511}{512}\)
A=1/2+1/4+1/8.....+1/256+1/512
2A=1+1/2+1/4+1/8...1/256
A=(1+1/2+1/4+1/8...1/256)-(1/2+1/4+1/8.....+1/256+1/512)
A=1-1/512
A=511/512
511/512
a) = \(\frac{127}{96}\)
b) = \(\frac{255}{256}\)
c) Mik bỏ nha
d) = \(\frac{1023}{512}\)
e) = \(\frac{2343}{625}\)
Ta có: A =1/2+1/4+1/8+1/16+....+1/256+1/512
=> 2A = 1 + 1/2 + 1/4 + 1/8 + ...+ 1/128 + 1/256
=> 2A - A = (1 + 1/2 + 1/4 + 1/8 + ...+ 1/128 + 1/256 -(1/2+1/4+1/8+1/16+....+1/256+1/512 )
A = 1 - 1/512 = 511/512
a) trieu dang làm rồi
b) A= 1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
A = 1 - 1/2 + 1/2- 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256 - 1/256 - 1/512
A = 1 - 1/512
A = 511/512