K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Lời giải:
Số số hạng của A:

$[(3n+1)-1]:3+1=n+1$ 

$A=[(3n+1)+1].(n+1):2=\frac{(3n+2)(n+1)}{2}$

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Câu 1:

Gọi $d=ƯC(n, n+1)$

$\Rightarrow n\vdots d; n+1\vdots d$

$\Rightarrow (n+1)-n\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$ 

Vậy $ƯC(n, n+1)=1$

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Câu 2:

Gọi $d=ƯC(5n+6, 8n+7)$

$\Rightarrow 5n+6\vdots d; 8n+7\vdots d$

$\Rightarrow 8(5n+6)-5(8n+7)\vdots d$

$\Rigtharrow 13\vdots d$

$\Rightarrow d\left\{1; 13\right\}$

 

1 tháng 4 2020

1, a) A=-1+2-3+4+...+200

=(-1+2)+(-3+4)+...+(-199+200)  (có tất cả 100 cặp)

=(-1)+(-1)+...+(-1)

=(-1).100=-100

b) B=1+3-5-7+9+11-...-397-399

=(1+3-5-7)+(9+11-13-15)+...+(393+395-397-399)  (có tất cả 50 cặp)

=(-8)+(-8)+...+(-8)

=(-8).50=-400

2, Gọi (n+1,3n+4) là d. ĐK : d\(\in\)N*.

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+4⋮d\end{cases}}\)

\(\Rightarrow\)(3n+4)-(n+1)\(⋮\)d

\(\Rightarrow\)(3n+4)-(3n+3)\(⋮\)d

\(\Rightarrow1⋮d\)

\(\Rightarrow\)d=1

\(\Rightarrow\)(n+1,3n+4)=1 nên 2 số n+1 và 3n+4 nguyên tố cùng nhau

Vậy n+1 và 3n+4 nguyên tố cùng nhau

Các phần còn lại tương tự, chứng minh ƯCLN=1 là ra.

14 tháng 7 2023

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

14 tháng 7 2023

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.

4 tháng 11 2015

a)Ta có: n+1 và 3n +4

Gọi d là ƯCLN ( n+1;3n+4)

Ta có n+1 chia hết cho d và 3n+4 cũng chia hết cho d.

        (3n+4)-(3n+3) = 1 chia hết cho d

Vậy hai số n+1 và 3n+4 là hai số nguyên rố cùng nhau.

b) Ta có: 2n+5 và 3n+7

Gọi d là ƯCLN(2n+5;3n+7)

Ta có 2n+5 chia hết cho d và 3n+7 cũng chia hết cho d

  ( 6n+15) - (6n +14) = 1 chia hết cho d

Vậy hai số 2n+5 và 3n+7 là hai số nguyên tố cùng nhau.

 

4 tháng 11 2015

trong câu hỏi tương tự ý đầy

28 tháng 2 2017

Chứng tỏ các phân số sau tối giản với mọi n thuộc N

a,n+3/n+4

Để phân số \(\dfrac{n+3}{n+4}\) tối giản thì [n+3;(n+4)] là hai số nguyên tố cùng nhau thì:

[n+3;(n+4)]=1

Gọi d là ước chung lớn nhất[n+3;(n+4)]

\(\Rightarrow\) [n+3;(n+4)]=d

\(\Rightarrow\) n+3\(⋮\)d\(\Rightarrow\)n+3\(⋮\)d\(\Rightarrow\)n+3\(⋮\)d

\(\Rightarrow\)n+4\(⋮\)d\(\Rightarrow\)n+4\(⋮\)d\(\Rightarrow\)n+4\(⋮\)d

\(\Rightarrow\) [n+4;(n+3)]\(⋮\)d\(\Rightarrow\)[n+4-n-3]\(⋮\)d=>-1\(⋮\)d=>d=1

Nên n+4;n+3 là hai số nguyên tố cùng nhau

Vậy \(\dfrac{n+3}{n+4}\) là phân số tối giản


17 tháng 8 2020

Bài 2:

a) \(\left(n^2+3n-1\right)\left(n+2\right)-n^3-2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3-2\)

\(=5n^2+5n-4\)

Mà 5n2 + 5n chia hết cho 5 mà 4 không chia hết cho 5

=> \(5n^2+5n-4\) không chia hết cho 5

=> điều cần cm sai

17 tháng 8 2020

Bài 2:

b) \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)

\(=n^2+3n-4-n^2+3n+4\)

\(=6n\) luôn chia hết cho 6 với mọi số nguyên n

=> đpcm