tính tổng A=\(\frac{1}{2}\)+\(\frac{1+2}{3}\)+\(\frac{1+2+3}{4}\)+..+\(\frac{1+2+3+4+..+2012}{2013}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 1 + 2 + 3 + ... + n = \(\frac{\left(n+1\right)n}{2}\)
Vậy nên : \(A=2013+\frac{2013}{\frac{3.2}{2}}+\frac{2013}{\frac{4.3}{2}}+...+\frac{2013}{\frac{2013.2012}{2}}\)
\(A=2013+\frac{4026}{2.3}+\frac{4016}{3.4}+...+\frac{4026}{2012.2013}\)
\(A=4026\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2012.2013}\right)\)
\(A=4026\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)
\(A=4026\left(1-\frac{1}{2013}\right)=4026.\frac{2012}{2013}=4024.\)
= \(\frac{1}{\sqrt{2}\left(\sqrt{2}+1\right)}+\frac{1}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{1}{\sqrt{2012}.\sqrt{2013}\left(\sqrt{2013}+\sqrt{2012}\right)}\)
= \(\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{\sqrt{2\left(\sqrt{2}+1\right)}}+...+\frac{\left(\sqrt{2013}-\sqrt{2012}\right)\left(\sqrt{2013}+\sqrt{2012}\right)}{\sqrt{2012}\sqrt{2013}\left(\sqrt{2012}+\sqrt{2013}\right)}\)
= \(\frac{\sqrt{2}-1}{\sqrt{2}}+...+\frac{\sqrt{2013}-\sqrt{2012}}{\sqrt{2012}\sqrt{2013}}\)
= \(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\)
= \(\frac{\sqrt{2013}-1}{\sqrt{2013}}=\frac{2013-\sqrt{2013}}{2013}\)
=> B=2013. (1+\(\frac{1}{1+2}\) +\(\frac{1}{1+2+3}\) +...+ \(\frac{1}{1+2+3+...+2012}\))
=>B= 2013.(\(\frac{2}{2}\) + \(\frac{2}{2.3}\) +\(\frac{2}{3.4}\) +...+\(\frac{2}{2012.2013}\))
=>B= 2013.2.(\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) +\(\frac{1}{3.4}\) +...+\(\frac{1}{2012.2013}\))
=>B=4026. (1-\(\frac{1}{2}\) +\(\frac{1}{2}\) -\(\frac{1}{3}\) + ...+\(\frac{1}{2012}\) - \(\frac{1}{2013}\))
=>B=4026.(1-\(\frac{1}{2013}\))
=>B=4026.\(\frac{2012}{2013}\) => B=2.2012=4024 Vậy B=4024
Mẫu số của A \(=\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}\)
\(=\left(1+1+...+1\right)+\left(\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}\right)\)
(2012 số 1) (2011 phân số)
\(=\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1\)
\(=\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}\)
\(=2013.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)\)
=> \(A=\frac{1}{2013}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}}\)
\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1}\)
\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}}\)
\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)}\)
\(\Rightarrow A=\frac{1}{2013}\)
Vậy \(A=\frac{1}{2013}\)
TA TÁCH 2012 RA THÀNH 2012 CON SỐ 1.LẤY (1 + 2012/2) + (1 + 2011/3) + (1 + 2010/4); +...+ (1 + 1/2013) Ở MẪU, TA ĐƯỢC 2014/2 + 2014/3 +...+ 2014/2013(Ở MẪU).ĐẶT THỪA SỐ CHUNG 2014 RA NGOÀI TA SẼ ĐƯỢC 2014(1/2 + 1/3 +...+ 1/2013)(Ở MẪU).LẤY TỬ CHIA MẪU TA SẼ CÒN LẠI 1/2014. VẬY A=1/2014
B=2013.(1+
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{2013}{1+2+3+...+2012}\)
B=2013(\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2012.2013}\)
B=2013.2(\(1\frac{1}{2013}=2013.2.\frac{2012}{2013}=4024\)
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
Ta có Tổng quát \(\frac{1+2+3+...+n}{\left(n+1\right)}=\frac{\frac{\left(n+1\right)n}{2}}{n+1}\)
= \(\frac{n}{2}\)
=> A = \(\frac{1}{2}+\frac{2}{2}+\frac{3}{2}+...+\frac{2012}{2}\)
= \(\frac{1+2+3+..+2012}{2}=\frac{2025078}{2}=1012539\)