Cho ΔABC đều ngoại tiếp đường tròn bán kính r.Tính diện tích ΔABC theo r
A.\(r^2\sqrt{3}\) B.\(9r^2\sqrt{3}\) C.\(6r^2\sqrt{3}\) D.\(3r^2\sqrt{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`\triangle ABC` đều nội tiếp `(O;R)`
`=>R=2/3` đường cao `\triangle ABC`
Mà đường cao `\triangle ABC=[\sqrt{3}a]/2`
`=>R=2/3 .[\sqrt{3}a]/2=[\sqrt{3}a]/3`
`->\bb C`
\(\Delta AHC\perp\) tại H ; \(AH^2=AC^2-CH^2=AC^2-\dfrac{1}{9}AC^2=\dfrac{8}{9}AC^2\)
\(\Delta ABC\perp\) tại A ; \(AH\perp BC\) tại H . Khi đó :
\(\dfrac{1}{AC^2}=\dfrac{1}{AH^2}-\dfrac{1}{AB^2}=\dfrac{9}{8AC^2}-\dfrac{1}{4}\) \(\Rightarrow\dfrac{1}{8AC^2}=\dfrac{1}{4}\Rightarrow AC^2=\dfrac{1}{2}\)
\(\Rightarrow AC=\dfrac{1}{\sqrt{2}}\)
\(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.2.\dfrac{1}{\sqrt{2}}=\dfrac{1}{\sqrt{2}}\)
Chọn A
Chọn D