K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2021

tham khảo

https://cungthi.online/cau-hoi/cho-tam-giac-abc-tap-hop-nhung-diem-m-thoaman-4mambmc-30238-1652.html

7 tháng 3 2021

Gọi G là trọng tâm của ΔABC

⇒ \(3\overrightarrow{MG}=\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\)

⇒ \(MA^2+MB^2+MC^{2^{ }}+2VT=9MG^2\)

⇒ VT = 9MG2 - MA2 + MB2 + MC2 

⇒ \(\dfrac{a^2}{6}\) = 9MG2 - MA2 + MB2 + MC2

MA2 + MB2 + MC2 

\(=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)

= 3MG2 + 2\(\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)+ GA2 + GB2 + GC2

= 3MG2\(GA^2+GB^{2^{ }}+GC^2\)

do \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

Vậy ta có

\(\dfrac{a^2}{6}=6MG^2-GA^2-GB^2-GC^2\) 

\(\dfrac{a^2}{6}+\left(GA^2+GB^2+GC^2\right)=6MG^2\)(1)

Lưu ý, GA,GB,GC lần lượt bằng \(\dfrac{2}{3}\) độ dài các đường trung tuyến kẻ từ A,B,C. Nhưng do ΔABC đều nên chúng sẽ lần lượt bằng \(\dfrac{2}{3}\) đường cao kẻ từ A,B,C (đặt là ha ; hb; hc)

Dễ dàng tìm được ha = hb = hc = \(\dfrac{a\sqrt{3}}{2}\)

⇒ GA = GB = GC = \(\dfrac{a\sqrt{3}}{3}\)

 GA2 = GB2 = GC2 = \(\dfrac{a^2}{3}\)

⇒ GA2 + GB2 + GC2 = a2

Thay vào (1)

\(\dfrac{a^2}{6}+a^2=3MG^2\) ⇔ MG2 = \(\dfrac{7a^2}{18}\)

⇔ MG = \(\dfrac{a\sqrt{14}}{6}\)

Vậy R = \(\dfrac{a\sqrt{14}}{6}\)

Ai xem hộ sai chỗ nào vs

 

 

NV
12 tháng 9 2021

Tam giác ABC là tam giác đều?

Nếu ABC đều thì \(\left|\overrightarrow{BM}\right|=BM=\dfrac{a\sqrt{3}}{2}\)

Chọn C

NV
30 tháng 4 2021

\(\dfrac{A}{2}+\dfrac{B}{2}=\dfrac{\pi}{2}-\dfrac{C}{2}\Rightarrow tan\left(\dfrac{A}{2}+\dfrac{B}{2}\right)=tan\left(\dfrac{\pi}{2}-\dfrac{C}{2}\right)\)

\(\Rightarrow\dfrac{tan\dfrac{A}{2}+tan\dfrac{B}{2}}{1-tan\dfrac{A}{2}tan\dfrac{B}{2}}=cot\dfrac{C}{2}=\dfrac{1}{tan\dfrac{C}{2}}\)

\(\Rightarrow tan\dfrac{A}{2}.tan\dfrac{C}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}=1-tan\dfrac{A}{2}tan\dfrac{B}{2}\)

\(\Rightarrow tan\dfrac{A}{2}tan\dfrac{B}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}+tan\dfrac{C}{2}tan\dfrac{A}{2}=1\)

Ta có:

\(tan\dfrac{A}{2}+tan\dfrac{B}{2}+tan\dfrac{C}{2}\ge\sqrt{3\left(tan\dfrac{A}{2}tan\dfrac{B}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}+tan\dfrac{C}{2}tan\dfrac{A}{2}\right)}=\sqrt{3}\)

Dấu "=" xảy ra khi và chỉ khi \(A=B=C\) hay tam giác ABC đều

7 tháng 3 2021

a, 3 đường trung tuyến cách nhau tại trọng tâm, khoảng cách từ trọng tâm đến đỉnh bằng \(\dfrac{2}{3}\) độ dài trung tuyến đi qua đỉnh đó

Từ định lí trên ta có \(\left\{{}\begin{matrix}m_a=\dfrac{2}{3}GA\\m_b=\dfrac{2}{3}GB\\m_c=\dfrac{2}{3}GC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m_a^2=\dfrac{4}{9}GA^2\\m_b^2=\dfrac{4}{9}GB^2\\m_c^2=\dfrac{4}{9}GB^2\end{matrix}\right.\)

Đặt D = GA2 + GB2 + GC2 

⇒ D = ma2 + mb2 + mc2 

⇒ D = \(\dfrac{2\left(a^2+b^2\right)-c^2+2\left(b^2+c^2\right)-a^2+2\left(a^2+c^2\right)-b^2}{4}\)

⇒ D = \(\dfrac{a^2+b^2+c^2}{3}\)

b, cotA = \(\dfrac{cosA}{sinA}=\dfrac{\dfrac{b^2+c^2-a^2}{2bc}}{\dfrac{a}{2R}}=R.\dfrac{b^2+c^2-a^2}{abc}\)

Tương tự ta có

cotB = \(R.\dfrac{a^2+c^2-b^2}{abc}\)

cotC = \(R.\dfrac{a^2+b^2-c^2}{abc}\)

Vậy cotA + cotB + cotC = \(R.\dfrac{a^2+b^2+c^2}{abc}\) (1)

Theo công thức tính diện tích

S = \(\dfrac{abc}{4R}\) ⇒ abc = 4 . S . R

Thế vào (1) ta có

cotA + cotB + cotC = \(R.\dfrac{a^2+b^2+c^2}{4.S.R}=\dfrac{a^2+b^2+c^2}{4S}\)

 

7 tháng 3 2021

a, \(\overrightarrow{GA}=-\dfrac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

\(\Rightarrow GA^2=\dfrac{1}{9}\left(AB^2+AC^2+2AB.AC.cosA\right)\)

\(=\dfrac{1}{9}\left(c^2+b^2+2bc.cosA\right)\)

\(=\dfrac{1}{9}\left(c^2+b^2+b^2+c^2-a^2\right)=\dfrac{2b^2+2c^2-a^2}{9}\)

Tương tự \(GB^2=\dfrac{2a^2+2c^2-b^2}{9}\)\(GC^2=\dfrac{2a^2+2b^2-c^2}{9}\)

\(\Rightarrow GA^2+GB^2+GC^2=\dfrac{a^2+b^2+c^2}{3}\)

b, \(cotA+cotB+cotC=\dfrac{cosA}{sinA}+\dfrac{cosB}{sinB}+\dfrac{cosC}{sinC}\)

\(=\dfrac{b^2+c^2-a^2}{2bcsinA}+\dfrac{a^2+c^2-b^2}{2acsinB}+\dfrac{a^2+b^2-c^2}{2absinC}\)

\(=\dfrac{b^2+c^2-a^2}{2bcsinA}+\dfrac{a^2+c^2-b^2}{2ac.\dfrac{b}{a}sinA}+\dfrac{a^2+b^2-c^2}{2ab.\dfrac{c}{a}sinA}\)

\(=\dfrac{a}{2sinA}\left(\dfrac{b^2+c^2-a^2}{abc}+\dfrac{a^2+c^2-b^2}{abc}+\dfrac{a^2+b^2-c^2}{abc}\right)\)

\(=\dfrac{a^2+b^2+c^2}{2bcsinA}=\dfrac{a^2+b^2+c^2}{4.S}\)

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

1.

Gọi $L$ là giao $BM, CN$ thì $L$ là trọng tâm tam giác $ABC$.

Áp dụng công thức đường trung tuyến:

$BM^2=\frac{c^2+a^2}{2}-\frac{b^2}{4}$

$CN^2=\frac{a^2+b^2}{2}-\frac{c^2}{4}$$BL^2=\frac{4}{9}BM^2=\frac{2}{9}(c^2+a^2)-\frac{1}{9}b^2$

$NL^2=\frac{1}{9}CN^2=\frac{1}{18}(a^2+b^2)-\frac{1}{36}c^2$

Theo cong thức Pitago:

$BN^2=BL^2+NL^2$

$\Rightarrow \frac{c^2}{4}=\frac{2}{9}(c^2+a^2)-\frac{1}{9}b^2+\frac{1}{18}(a^2+b^2)-\frac{1}{36}c^2$

$\Rightarrow $5a^2=b^2+c^2$ hay $b^2+c^2=45$

Áp dụng công thức cos:

$a^2=b^2+c^2-2bc\cos A=b^2+c^2-\sqrt{3}bc$

$\Rightarrow 9=45-\sqrt{3}bc\Rightarrow bc=12\sqrt{3}$

$S_{ABC}=\frac{1}{2}bc\sin A=\frac{1}{2}.12\sqrt{3}.\sin 30=3\sqrt{3}$

Đáp án A.

 

 

 

$b=

 

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

2.

\(R_{ABC}=\frac{abc}{4S_{ABC}}=\frac{3bc}{4S}=\frac{3.12\sqrt{3}}{4.3\sqrt{3}}=3\)

Đáp án B.

NV
12 tháng 8 2021

\(\left\{{}\begin{matrix}x\in\left(0;\dfrac{\pi}{2}\right)\\sinx=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\) \(\Rightarrow x=\dfrac{\pi}{3}\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{\pi}{6}\Rightarrow cos\dfrac{x}{2}=cos\dfrac{\pi}{6}=\dfrac{\sqrt{3}}{2}\)

10 tháng 5 2021

Ta có: A = \(sin\dfrac{A}{2}+sin\dfrac{B}{2}+sin\dfrac{C}{2}=cos\dfrac{B+C}{2}+2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}\)

\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}-cos^2\dfrac{B+C}{4}+sin^2\dfrac{B+C}{4}=0\)\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}+2sin^2\dfrac{B+C}{4}-1=0\)

Δ' = \(cos^2\dfrac{B-C}{4}-2\left(A-1\right)\ge0\)

\(\Rightarrow A-1\le\dfrac{1}{2}\Leftrightarrow A\le\dfrac{3}{2}\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2021

Lời giải:

$p=\frac{AB+BC+AC}{2}=\frac{\sqrt{6}+\sqrt{3}+3}{2}$

Theo công thức Heron:

$S_{ABC}=\sqrt{p(p-AB)(p-BC)(p-AC)}=\frac{3+\sqrt{3}}{2}$

Bán kính đường tròn ngoại tiếp:

$R=\frac{AB.BC.AC}{4S}=\sqrt{2}$ (đvđd)

AH
Akai Haruma
Giáo viên
13 tháng 3 2021

Lời giải:

Theo BĐT Bunhiacopxky ta có:

$M^2=(\sin A+\sqrt{3}\cos A)^2\leq (\sin ^2A+\cos ^2A)(1+3)=1.4=4$

$\Rightarrow -2\leq M\leq 2$

Do đó $M$ không thể nhận giá trị $2\sqrt{3}$ vì $2\sqrt{3}>2$

Đáp án C.