Tìm min, mã của biểu thức \(P=\frac{x^2-x+1}{x^2+x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(A=\frac{x^2+x+1}{x^2-x+1}\)ta có :
\(A=\frac{\frac{1}{3}x^2-\frac{1}{3}x+\frac{1}{3}+\frac{2}{3}x^2-\frac{4}{3}x+\frac{2}{3}}{x^2-x+1}=\frac{\frac{1}{3}\left(x^2-x+1\right)+\frac{2}{3}\left(x^2-2x+1\right)}{x^2-x+1}\)
\(=\frac{1}{3}+\frac{\frac{2}{3}\left(x-1\right)^2}{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\ge\frac{1}{3}\forall x\) có GTNN là \(\frac{1}{3}\) tại \(x=1\)
Sr nhìn lộn
\(A=\frac{x^2+x+1}{x^2-x+1}=\frac{\frac{1}{3}x^2-\frac{1}{3}x+\frac{1}{3}+\frac{2}{3}x^2+\frac{4}{3}x+\frac{2}{3}}{x^2-x+1}=\frac{\frac{1}{3}\left(x^2-x+1\right)+\frac{2}{3}\left(x^2+2x+1\right)}{x^2-x+1}\)
\(=\frac{1}{3}+\frac{\frac{2}{3}\left(x+1\right)^2}{x^2-x+1}\ge\frac{1}{3}\) có gtnn là 1/3 tại x = - 1
Ta thấy \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
- \(B=\frac{x^2+1}{x^2-x+1}=\frac{\left(x^2+2x+1\right)+2\left(x^2-x+1\right)}{3\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{3\left(x^2-x+1\right)}+\frac{2}{3}\ge\frac{2}{3}\)
Đẳng thức xảy ra khi x = -1
- \(B=\frac{-\left(x^2-2x+1\right)+2\left(x^2-x+1\right)}{x^2-x+1}=-\frac{\left(x-1\right)^2}{x^2-x+1}+2\le2\)
Đẳng thức xảy ra khi x = 1
Vậy minB = 2/3 tại x = -1
maxB = 2 tại x = 1
- TÌM MIN :
Ta có : \(\frac{x^2+x+1}{x^2-x+1}=\frac{3\left(x^2+x+1\right)}{3\left(x^2-x+1\right)}=\frac{2\left(x^2+2x+1\right)+\left(x^2-x+1\right)}{3\left(x^2-x+1\right)}=\frac{2\left(x+1\right)^2}{3\left(x^2-x+1\right)}+\frac{1}{3}\ge\frac{1}{3}\)
Vậy Min = \(\frac{1}{3}\Leftrightarrow x=-1\)
- TÌM MAX :
Ta có : \(\frac{x^2+x+1}{x^2-x+1}=\frac{-2\left(x^2-2x+1\right)+3\left(x^2-x+1\right)}{x^2-x+1}=\frac{-2\left(x-1\right)^2}{x^2-x+1}+3\le3\)
Vậy Max = 3 <=> x = 1
Nháp trước :
\(A=\frac{x^2+1}{x^2-x+1}\)
\(\Leftrightarrow Ax^2-Ax+A=x^2+1\)
\(\Leftrightarrow x^2\left(A-1\right)-Ax+A-1=0\)
*Khi A = 1 thì x = 0
*Khi A khác 1
Pt có nghiệm khi \(\Delta\ge0\Leftrightarrow A^2-4\left(A-1\right)^2\ge0\)
\(\Leftrightarrow A^2-4\left(A^2-2A+1\right)\ge0\)
\(\Leftrightarrow A^2-4A^2+8A-1\ge0\)
\(\Leftrightarrow-3A^2+8A-1\ge0\)
\(\Leftrightarrow\frac{4-\sqrt{13}}{3}\le A\le\frac{4+\sqrt{13}}{3}\)
Nên \(A_{min}=\frac{4-\sqrt{13}}{3}\) Số khá xấu nên nếu làm theo cách lớp 8 thì cũng mệt đấy !
Nếu muốn thì hãy phân tích cái A ra :) Biết đáp án trước rồi thì có hướng -> dễ
diều kiện x >= 0
P=\(\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right).\frac{4\sqrt{x}}{3}\)
= \(\frac{x+2-x+\sqrt{x}-1}{x\sqrt{x}+1}.\frac{4\sqrt{x}}{3}\)
=\(\frac{\sqrt{x}+1}{x\sqrt{x}+1}.\frac{4\sqrt{x}}{3}\)=\(\frac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)
P=8/9
<=> \(\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\)
<=> \(3\sqrt{x}=2x-2\sqrt{x}+1\)
<=> \(2x-5\sqrt{x}+2=0\)
<=> \(\left[\begin{array}{nghiempt}x=4\\x=\frac{1}{4}\end{array}\right.\)
vậy x=4 hoặc x=1/4 thì p=8/9
a) \(P=\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\cdot\frac{4\sqrt{x}}{3}\left(ĐK:x\ge0;x\ne-1\right)\)
\(=\left[\frac{x+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}+1}\right]\cdot\frac{4\sqrt{x}}{3}\)
\(=\frac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}\)
\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}\)
\(=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
b) Để P=8/9
\(\Leftrightarrow\)\(\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\)
\(\Leftrightarrow24\left(x-\sqrt{x}+1\right)=36\sqrt{x}\)
\(\Leftrightarrow24x-24\sqrt{x}+24-36\sqrt{x}=0\)
\(\Leftrightarrow24x-60\sqrt{x}+24=0\)
\(\Leftrightarrow12\left(2x-5\sqrt{x}+2\right)=0\)
\(\Leftrightarrow\left(2x-\sqrt{x}\right)-\left(4\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)-2\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2\sqrt{x}-1=0\\\sqrt{x}-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=\frac{1}{2}\\\sqrt{x}=2\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{4}\left(tm\right)\\x=4\left(tm\right)\end{array}\right.\)
\(M=\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\le\frac{x}{2x}+\frac{y}{2y}+\frac{z}{2z}=\frac{3}{2}\)
Nên max M là \(\frac{3}{2}\) khi x=y=z=1
\(x+y+z=3\ge x,y,z\)\(\Rightarrow M\ge\frac{x}{10}+\frac{y}{10}+\frac{z}{10}=\frac{3}{10}\)
Nên min M là \(\frac{3}{10}\) khi trong x,y,z có 2 số bằng 0 và 1 số bằng 3