K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2016

Ta thấy \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

  • \(B=\frac{x^2+1}{x^2-x+1}=\frac{\left(x^2+2x+1\right)+2\left(x^2-x+1\right)}{3\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{3\left(x^2-x+1\right)}+\frac{2}{3}\ge\frac{2}{3}\)

Đẳng thức xảy ra khi x = -1

  • \(B=\frac{-\left(x^2-2x+1\right)+2\left(x^2-x+1\right)}{x^2-x+1}=-\frac{\left(x-1\right)^2}{x^2-x+1}+2\le2\)

Đẳng thức xảy ra khi x = 1

Vậy minB = 2/3 tại x = -1

maxB = 2 tại x = 1

28 tháng 10 2018

\(M=\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\le\frac{x}{2x}+\frac{y}{2y}+\frac{z}{2z}=\frac{3}{2}\)

Nên max M là \(\frac{3}{2}\) khi x=y=z=1

\(x+y+z=3\ge x,y,z\)\(\Rightarrow M\ge\frac{x}{10}+\frac{y}{10}+\frac{z}{10}=\frac{3}{10}\)

Nên min M là \(\frac{3}{10}\) khi trong x,y,z có 2 số bằng 0 và 1 số bằng 3

22 tháng 5 2017

\(GT\Leftrightarrow3x^2+y^2+z^2+\left(y+z\right)^2=2\)

Áp dụng BĐT bunyakovsky:\(y^2+z^2\ge\frac{1}{2}\left(y+z\right)^2\)

\(2\ge\frac{3}{2}\left(y+z\right)^2+3x^2\Leftrightarrow4\ge3\left(y+z\right)^2+6x^2=3\left[\left(y+z\right)^2+2x^2\right]\)

\(\left(2+1\right)\left[\left(y+z\right)^2+2x^2\right]\ge2\left(x+y+z\right)^2\)

\(\left(x+y+z\right)^2\le2\Leftrightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

17 tháng 10 2020

\(hcmuop\underrightarrow{jjjjjjjjj}me\)

30 tháng 12 2016

mấy bài như này hình như dùng miền giá trị được đó bạn

hộ mik nhé

tks bạn

NV
25 tháng 1 2022

1.

Đặt \(x+y=a\Rightarrow y=a-x\)

\(\Rightarrow x^2+2x\left(a-x\right)-14\left(a-x\right)-10x+3\left(a-x\right)^2+27=0\)

\(\Leftrightarrow2x^2-4\left(a+1\right)x+3a^2-10a+27=0\)

\(\Delta'=4\left(a+1\right)^2-2\left(3a^2-10a+27\right)\ge0\)

\(\Leftrightarrow-a^2+14a-25\ge0\)

\(\Rightarrow7-2\sqrt{6}\le a\le7+2\sqrt{6}\)

\(\Rightarrow-10-2\sqrt{6}\le P\le-10+2\sqrt{6}\)

2. Chắc đề là \(a;b>0\) (đảm bảo mẫu dương) chứ ko phải \(a.b>4\)

\(M\ge\dfrac{\left(a+b\right)^2}{a+b-8}=\dfrac{\left(a+b-8+8\right)^2}{a+b-8}=\dfrac{\left(a+b-8\right)^2+16\left(a+b-8\right)+64}{a+b-8}\)

\(M\ge a+b-8+\dfrac{64}{a+b-8}+16\ge2\sqrt{\dfrac{64\left(a+b-8\right)}{a+b-8}}+16=32\)

Dấu "=" xảy ra khi \(a=b=8\)

25 tháng 1 2022

a;b > 4 không phải > 0