Giải bài toán hình Cho đường tròn (O;R) với dây CD cố định.Điểm M thuộc tia đối của tia CD .Qua M kẻ hai tiếp tuyến MA,MB với (O;R) ( A thuộc cung lớn CD).Gọi I là trung điểm CD.Nối BI cắt đường tròn tại E.Nối OM cắt AB tại H. 1 Cm năm điểm A,B,M,O,I thuộc một đường tròn 2 Cm AE song song với CD 3 Tìm vị trí của M để MA vuông gón với MB 4 Cm HB là phân giác góc CHD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bán kính hình tròn là :
3,2 : 2 = 1,6 (m)
diện tích hình tròn là :
1,6 x 1,6 x 3,14 = 8,0384 ( m2)
đáp số : 8,0384 m2
bán kính hình tròn là :
3,2 : 2 = 1,6 (m)
diện tích hình tròn là :
1,6 x 1,6 x 3,14 = 8,0384 ( m2)
đáp số : 8,0384 m2
bạn ơi trực tâm là giao điểm của ba đường cao trong tam giác
Còn trực tâm của 3 điểm thì mình chưa nghe bao giờ.
Đường tròn c: Đường tròn qua B_2 với tâm O Đường tròn c_1: Đường tròn qua B_1 với tâm O' Đoạn thẳng f: Đoạn thẳng [O, O'] Đoạn thẳng h: Đoạn thẳng [O, C] Đoạn thẳng i: Đoạn thẳng [C, D] Đoạn thẳng j: Đoạn thẳng [O', D] Đoạn thẳng k: Đoạn thẳng [C, B] Đoạn thẳng l: Đoạn thẳng [D, B] Đoạn thẳng n: Đoạn thẳng [O, A] Đoạn thẳng q: Đoạn thẳng [B, J] Đoạn thẳng r: Đoạn thẳng [B, A] Đoạn thẳng t: Đoạn thẳng [C, I] O = (-0.56, 2.66) O = (-0.56, 2.66) O = (-0.56, 2.66) O' = (4.8, 2.61) O' = (4.8, 2.61) O' = (4.8, 2.61) Điểm A: Giao điểm đường của c, c_1 Điểm A: Giao điểm đường của c, c_1 Điểm A: Giao điểm đường của c, c_1 Điểm B: Giao điểm đường của c, c_1 Điểm B: Giao điểm đường của c, c_1 Điểm B: Giao điểm đường của c, c_1 Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm D: Giao điểm đường của c_1, d Điểm D: Giao điểm đường của c_1, d Điểm D: Giao điểm đường của c_1, d Điểm J: Giao điểm đường của c_1, p Điểm J: Giao điểm đường của c_1, p Điểm J: Giao điểm đường của c_1, p Điểm I: Giao điểm đường của s, l Điểm I: Giao điểm đường của s, l Điểm I: Giao điểm đường của s, l
Kéo dài BO' cắt (O') tại J; kéo dài CA cắt BD tại I.
Ta thấy bời vì hai đường tròn cùng bán kính nên OAO'B là hình thoi. Vậy thì OA // BO' hay OA // O'J
Lại có do DCOO' là hình bình hành nên OC // O'D
Vậy thì \(\widehat{COA}=\widehat{DO'J}\)
Ta có \(\widehat{ICB}+\widehat{CBI}=\widehat{ICB}+\widehat{CBA}+\widehat{ABD}=\frac{sđ\widebat{AB}+sđ\widebat{CA}+sđ\widebat{AD}}{2}\)
\(=\frac{sđ\widebat{BA}+sđ\widebat{AD}}{2}+\frac{\widehat{COA}}{2}=\frac{sđ\widebat{BD}+\widehat{COA}}{2}\)
\(=\frac{\widehat{BO'D}+\widehat{DO'J}}{2}=\frac{180^o}{2}=90^o\)
Vậy thì \(\widehat{CIB}=90^o\Rightarrow CA\perp BD\)
Lại có theo tính chất đường nối tâm, \(AB\perp OO'\) mà OO' // CD nên \(BA\perp CD\)
Xét tam giác BCD có \(CA\perp BD;BA\perp CD\) nên A là trực tâm tam giác BCD.
a: Sửa đề: A,B,M,O
Xét tứ giác BMOA có
\(\widehat{BMO}+\widehat{BAO}=90^0+90^0=180^0\)
=>BMOA là tứ giác nội tiếp
=>B,M,O,A cùng thuộc một đường tròn
b: Xét (O) có
BA,BM là tiếp tuyến
Do đó: BA=BM và OB là phân giác của \(\widehat{AOM}\)
=>\(\widehat{AOM}=2\cdot\widehat{AOB}\)
Xét (O) có
CA,CN là tiếp tuyến
Do đó: CA=CN và OC là phân giác của \(\widehat{AON}\)
=>\(\widehat{AON}=2\cdot\widehat{AOC}\)
\(\widehat{AON}+\widehat{AOM}=180^0\)(hai góc kề bù)
=>\(2\cdot\widehat{AOC}+2\cdot\widehat{AOB}=180^0\)
=>\(2\cdot\widehat{BOC}=180^0\)
=>\(\widehat{BOC}=90^0\)
Xét ΔOBC vuông tại O có OA là đường cao
nên \(OA^2=AB\cdot AC\)
mà AB=BM và AC=CN
nên \(OA^2=BM\cdot CN\)
c: BA=BM
=>B nằm trên đường trung trực của AM(1)
OA=OM
=>O nằm trên đường trung trực của AM(2)
Từ (1) và (2) suy ra BO là đường trung trực của AM
=>BO\(\perp\)AM tại trung điểm của AM
=>BO\(\perp\)AM tại H và H là trung điểm của AM
CA=CN
=>C nằm trên đường trung trực của AN(3)
OA=ON
=>O nằm trên đường trung trực của AN(4)
Từ (3) và (4) suy ra CO là đường trung trực của AN
=>CO\(\perp\)AN tại trung điểm của AN
=>CO\(\perp\)AN tại K và K là trung điểm của AN
Xét tứ giác AHOK có \(\widehat{AHO}=\widehat{AKO}=\widehat{HOK}=90^0\)
nên AHOK là hình chữ nhật
Đường tròn c: Đường tròn qua D_1 với tâm O Đoạn thẳng f: Đoạn thẳng [C, D] Đoạn thẳng h: Đoạn thẳng [M, C] Đoạn thẳng k: Đoạn thẳng [M, A] Đoạn thẳng l: Đoạn thẳng [M, B] Đoạn thẳng n: Đoạn thẳng [B, E] Đoạn thẳng p: Đoạn thẳng [O, A] Đoạn thẳng q: Đoạn thẳng [O, B] Đoạn thẳng r: Đoạn thẳng [M, O] Đoạn thẳng s: Đoạn thẳng [A, B] Đoạn thẳng t: Đoạn thẳng [H, C] Đoạn thẳng a: Đoạn thẳng [D, H] O = (1.6, 4.42) O = (1.6, 4.42) O = (1.6, 4.42) Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm A: Giao điểm của c, j Điểm A: Giao điểm của c, j Điểm A: Giao điểm của c, j Điểm B: Giao điểm của c, i Điểm B: Giao điểm của c, i Điểm B: Giao điểm của c, i Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm E: Giao điểm của c, m Điểm E: Giao điểm của c, m Điểm E: Giao điểm của c, m Điểm H: Giao điểm của r, s Điểm H: Giao điểm của r, s Điểm H: Giao điểm của r, s
a. Do I là trung điểm CD nên \(OI⊥CD\Rightarrow\widehat{OIM}=90^o.\)
Ta thấy \(\widehat{OAM}=\widehat{OBM}=\widehat{OIM}=90^o\) nên A, B ,M , O, I cùng thuộc đường tròn đường kính MO.
b. Xét đường tròn (O) có \(\widehat{AEB}=\frac{\widehat{AOB}}{2}\) (1)
Xét đường tròn đường kính MO có MA = MB nên \(sđ\widebat{AM}=sđ\widebat{MB}\).
Nên \(\widehat{AOB}=\frac{sđ\widebat{AMB}}{2}=sđ\widebat{AM}=sđ\widebat{MB}\)
Lại có \(\widehat{MIB}=\frac{sđ\widebat{MB}}{2}=\frac{\widehat{AOB}}{2}\), vậy nên \(\widehat{MIB}=\widehat{AEI.}\)
Lại có \(\widehat{MIB}=\widehat{EID}\) (đối đỉnh) nên \(\widehat{AEI}=\widehat{EID}\)
Chúng ở vị trí so le trong nên AE // CD.
c. Nếu \(MA⊥MB\)thì tứ giác OAMB là hình chữ nhật, lại có OA = OB nên nó là hình vuông. Khi đó \(OM=\sqrt{2OB^2}=R\sqrt{2}\)
Vậy để \(MA⊥MB\) thì M thuộc tia đối tia CD mà \(OM=R\sqrt{2}\)
d. Ta thấy ngay \(\Delta MBD\sim\Delta MCB\left(g-g\right)\Rightarrow\frac{MB}{MC}=\frac{MD}{MB}\Rightarrow MB^2=MC.MD\)
Xét tam giác vuông MBO có BH là đường cao nên \(MB^2=MH.MO\)
Vậy thì \(MH.MO=MC.MD\Rightarrow\frac{MH}{MD}=\frac{MC}{MO}\)
Suy ra \(\Delta MCH\sim\Delta MDO\left(c-g-c\right)\)
Vậy thì \(\widehat{MHC}=\widehat{MDO}\left(1\right)\) hay tứ giác HCDO nội tiếp. Vậy \(\widehat{OCD}=\widehat{OHD}\) (2) (Cùng chắn cung OD)
Lại có \(\widehat{MDO}=\widehat{OCD}\) (OC = OD = R) nên \(\widehat{MHC}=\widehat{OHD}\)
Vậy thì \(\widehat{CHB}=\widehat{DHB}\) (Cùng phụ với góc MHC và OHD)
Tóm lại HB là phân giác góc CHD(đpcm).
chưa học và khó quá nên ít người trả lời