Giải phương trình
1. \(x^2=5x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3x-2)(4x+5)=0
=> 3x-2=0 hoặc 4x+5=0
3x=2 4x=-5
x=2/3 x=-5/4
2) 2x-7=5x+20
2x-5x=20+7
-3x=27
x=-9
Bài 1:
\(\Leftrightarrow3x-2=0\) hay \(\Leftrightarrow4x+5=0\)
\(\Leftrightarrow3x=2\) \(\Leftrightarrow4x=-5\)
\(\Leftrightarrow x=\dfrac{2}{3}\) \(\Leftrightarrow x=-\dfrac{5}{4}\)
Vậy S = \(\left\{\dfrac{2}{3};-\dfrac{5}{4}\right\}\)
Bài 2:
\(\Leftrightarrow2x-5x=20+7\\ \Leftrightarrow-3x=27\\ \Leftrightarrow x=\dfrac{27}{-3}=-9\)
Vậy S = -9
1)\(\sqrt{4x^2+12x+9}=2-x\)
\(\Leftrightarrow\sqrt{\left(2x+3\right)^2}=2-x\)
\(\Leftrightarrow\left|2x+3\right|=2-x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2-x\\2x+3=x-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-5\end{matrix}\right.\)
\(\)
1, x(x-1)=2(x-1)
<=> x(x-1)-2(x-1)=0
<=> (x-2)(x-1)=0
<=>x=2 hoặc x=1
vậy ...
2, (x+2)(2x-3)=x^2 -4
<=>(x+2)(2x-3)=(x-2)(x+2)
<=> (x+2)(2x-3)-(x-2)(x+2)=0
<=> (x+2)(2x-3-x+2)=0
<=> x=-2 hoặc x=1
vây...
3,x^2 +3x +2=0
<=> x^2 +x+2x+2=0
<=>(x+2)(x+1)=0
<=> x=-2 hoặc x=-1
vậy ...
5, x^3+x^2-12x =0
<=> x(x^2+x-12)=0
<=>x(x^2-3x+4x-12)=0
<=>x(x+4)(x-3)=0
<=> x=0 hoặc x=-4 hoặc x=3
vậy ...
1) Ta có: \(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
2) Ta có: \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
3) Ta có: \(\left(2x-1\right)^2-\left(2x+5\right)^2=11\)
\(\Leftrightarrow4x^2-4x-1-4x^2-20x-25=11\)
\(\Leftrightarrow-24x=11+1+25=37\)
hay \(x=-\dfrac{37}{24}\)
5) Ta có: \(3x^2-5x-8=0\)
\(\Leftrightarrow3x^2+3x-8x-8=0\)
\(\Leftrightarrow3x\left(x+1\right)-8\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{8}{3}\end{matrix}\right.\)
8) Ta có: \(\left|x-5\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
10) Ta có: \(\left|2x+1\right|=\left|x-1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=x-1\\2x+1=1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-x=-1-1\\2x+x=1-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)
1, đk : x>= 1/2
TH1 : \(x-3=2x-1\Leftrightarrow x=-2\)(ktm)
TH2 : \(x-3=1-2x\Leftrightarrow3x=4\Leftrightarrow x=\dfrac{4}{3}\)(tm)
2, \(x^2+5\left(x+2\right)=x\left(x+3\right)\Leftrightarrow x^2+5x+10=x^2+3x\)
\(\Leftrightarrow2x=-10\Leftrightarrow x=-5\)
1. \(x+3=2x-1\\ \Leftrightarrow x-2x=-3-1\\ \Leftrightarrow-x=-4\\ \Leftrightarrow x=4\)
Vậy PT có tập nghiệm là S= { 4 }
2. \(x^2+5\left(x+2\right)=x\left(x+3\right)\\ \Leftrightarrow x^2+5x+10=x^2+3\\ \Leftrightarrow x^2+5x-x^2=3-10\\ \Leftrightarrow5x=-7\\ \Leftrightarrow x=-\dfrac{7}{5}\)
Vậy PT có tập nghiệm S= { \(-\dfrac{7}{5}\) }
\(\Leftrightarrow4\left(x+6\right)+4x=x\left(x+6\right)\)
\(\Leftrightarrow x^2+6x=8x+24\)
\(\Leftrightarrow x^2-2x-24=0\)
=>(x-6)(x+4)=0
=>x=6(nhận) hoặc x=-4(nhận)
\(\left\{{}\begin{matrix}\dfrac{3}{x+1}-2x=-1\left(ĐK:x\ne-1\right)\\\dfrac{5}{x+1}+3y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{9}{x+1}-6y=-3\\\dfrac{10}{x+1}+6y=22\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}\dfrac{9}{x+1}+\dfrac{10}{x+1}=19\\\dfrac{3}{x+1}-2y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{5}{4}\end{matrix}\right.\)
<=> x^2 - 5x = 0
<=> x ( x - 5 ) = 0
<=> x = 0
x - 5 = 0 <=> x = 5
Vậy: S = {0;5}