
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Có (x+1)/(x-2)+x/(x+2)=(6-x)/(x^2-4)+1
<=>(x+1)(x+2)/(x-2)(x+2)+x(x-2)/(x-2)(x+2)=(6-x)/(x-2)(x+2)+(x-2)(x+2)/(x-2)(x+2)
=>(x+1)(x+2)+x(x-2)=(6-x)+(x-2)(x+2)
<=>x^2+3x+2+x^2-2x=6-x+x^2-4
<=>2x^2+x+2=x^2-x+2
<=>x^2+2x=0
<=>x(x+2)=0
suy ra :x=0 hoặc x=-2
Vậy...

Theo bài ra , ta có :
\(\left(x-6\right)^4+\left(x-8\right)^4=16\)
\(\Leftrightarrow\left(x-6\right)^4+\left(x-8\right)^4=2^4\)
\(\Leftrightarrow\left(x-6\right)^2+\left(x-8\right)^2=2^2\)
\(\Leftrightarrow x^2-12x+36+x^2-16x+64=4\)
\(\Leftrightarrow2x^2-28x+96=0\)
\(\Leftrightarrow2x^2-16x-12x+96=0\)
\(\Leftrightarrow2x\left(x-8\right)-12\left(x-8\right)=0\)
\(\Leftrightarrow\left(x-8\right)\left(2x-12\right)=0\)
\(\Leftrightarrow2\left(x-6\right)\left(x-8\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-8=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=6\\x=8\end{cases}}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{6,8\right\}\)
Chúc bạn học tốt =))
Áp dụng tính chất giao hoán, phân phối của phép công
cố + quá= cố+ quá
quá+ cố =quá + cố
=> 2 (cố quá) =2 (quá cố)



a, pt <=> (x^4-4x+4)+(x^2+6x+9) = 0
<=> (x^2-2)^2+(x+3)^2=0
<=> x^2-2=0 và x+3=0
=> pt vô nghiệm
b, pt <=> (x-1).(x^6+x^5+x^4+x^3+x^2+x+1) = 0
<=> x^7+x^6+x^5+x^4+x^3+x^2+x-x^6-x^5-x^4-x^3-x^2-x-1 = 0
<=> x^7-1=0
<=> x^7=1 = 1^7
=> x=1
Tk mk nha

1) \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)
\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-4\right)\cdot3x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}\)
2) \(9x^2-1=3x+1\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)-\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=\frac{2}{3}\end{cases}}\)

1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)
ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)
<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)
<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)
<=> \(\frac{3x+10}{x^2+2x-3}=0\)
<=> \(3x+10=0\)
<=> \(x=-\frac{10}{3}\)

Nhiều vậy ai làm hết được :P
1) \(\frac{3x-2}{3}-2=\frac{4x+1}{4}\)
\(\Leftrightarrow\frac{3x-8}{3}=\frac{4x-1}{4}\)
\(\Leftrightarrow4\left(3x-8\right)=3\left(4x-1\right)\)
\(\Leftrightarrow12x-32=12x-3\)(vô lí)
Vậy pt vô nghiệm
P/s: mấy câu sau tương tự thôi mà :)))
nhăm nhe 1 câu thôi
\(10,\frac{3+5x}{5}-3=\frac{9x-3}{4}\)
\(\Leftrightarrow\frac{3+5x-15}{5}=\frac{9x-3}{4}\)
\(\Leftrightarrow\frac{-12+5x}{5}=\frac{9x-3}{4}\)
\(\Leftrightarrow\left(-12+5x\right)5=\left(9x-3\right)4\)
\(\Leftrightarrow-60+25x=36x-12\)
\(\Leftrightarrow26x-36x=-12+60\)
\(\Leftrightarrow-10x=48\)
\(\Leftrightarrow x=-4,8\)
\(\Leftrightarrow4\left(x+6\right)+4x=x\left(x+6\right)\)
\(\Leftrightarrow x^2+6x=8x+24\)
\(\Leftrightarrow x^2-2x-24=0\)
=>(x-6)(x+4)=0
=>x=6(nhận) hoặc x=-4(nhận)