K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

vecto AN=vecto AC+vecto CN

=vecto AC+1/2vecto CD

=vecto AC+1/2vecto BA

=vecto AC-1/2vecto AB

26 tháng 6 2017

Đáp án C

16 tháng 5 2019

Đáp án C

19 tháng 3 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

17 tháng 12 2023

a) Ta có:

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)

         \(=\overrightarrow{AB}+k\overrightarrow{BC}\)

         \(=\overrightarrow{AB}+k\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\)

         \(=\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\)

b) \(\overrightarrow{NP}=\overrightarrow{AP}-\overrightarrow{AN}\)

             \(=\dfrac{2}{3}\overrightarrow{AC}-\dfrac{3}{4}\overrightarrow{AB}\)

Để \(AM\perp NP\)

\(\Rightarrow\overrightarrow{AM}.\overrightarrow{NP}=\overrightarrow{0}\)

\(\Rightarrow\left[\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\right]\left(-\dfrac{3}{4}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\right)=\overrightarrow{0}\)

\(\Leftrightarrow\dfrac{3\left(k-1\right)}{4}AB^2+\dfrac{2k}{3}AC^2+\dfrac{2\left(1-k\right)}{3}\overrightarrow{AB}.\overrightarrow{AC}-\dfrac{3k}{4}\overrightarrow{AB}.\overrightarrow{AC}=\overrightarrow{0}\)

\(\Leftrightarrow\dfrac{3\left(k-1\right)}{4}AB^2+\dfrac{2k}{3}AB^2+\dfrac{1-k}{3}AB^2-\dfrac{3k}{8}AB^2=0\)

\(\Leftrightarrow AB^2\left[\dfrac{3\left(k-1\right)}{4}+\dfrac{2k}{3}+\dfrac{1-k}{3}-\dfrac{3k}{8}\right]=0\)

\(\Leftrightarrow18\left(k-1\right)+16k+8\left(1-k\right)-9k=0\left(AB>0\right)\)

\(\Leftrightarrow17k=10\)

\(\Leftrightarrow k=\dfrac{10}{17}\)

20 tháng 10 2023

loading...   a) *) Chứng minh AMNB là hình bình hành:

Do O là giao điểm của AC và BD

Mà ABCD là hình bình hành (gt)

⇒ O là trung điểm của AC và BD

Do MN // AB (gt)

⇒ OM // CD

∆ACD có

O là trung điểm AC

OM // CD

⇒ M là trung điểm AD

⇒ AM = AD : 2   (1)

Do MN // AB (gt)

⇒ ON // AB

∆ABC có:

O là trung điểm AC (cmt)

ON // AB (cmt)

⇒ N là trung điểm BC

⇒ BN = BC : 2   (2)

Do ABCD là hình bình hành (gt)

⇒ AD // BC

⇒ AM // BN

Từ (1) và (2) ⇒ AM = BN

Tứ giác AMNB có:

AM // BN (cmt)

AM = BN (cmt)

⇒ AMNB là hình bình hành

*) Chứng minh APCQ là hình bình hành

Do ABCD là hình bình hành (gt)

⇒ AB // CD

⇒ AP // CQ

Tứ giác APCQ có:

AP // CQ (cmt)

AP = CQ (gt)

⇒ APCQ là hình bình hành

c) Do O là trung điểm AC (cmt)

M là trung điểm AD (cmt)

⇒ OM là đường trung bình của ∆ACD

⇒ OM = CD : 2   (3)

Do O là trung điểm AC (cmt)

N là trung điểm BC (cmt)

⇒ ON là đường trung bình của ∆ABC

⇒ ON = AB : 2

Mà AB = CD (do ABCD là hình bình hành)

⇒ OM = ON

⇒ O là trung điểm MN

Do APCQ là hình bình hành (cmt)

O là trung điểm AC (cmt)

⇒ O là trung điểm PQ

Tứ giác MPNQ có:

O là trung điểm MN (cmt)

O là trung điểm PQ (cmt)

⇒ MPNQ là hình bình hành

⇒ MP // NQ và MQ = NP

28 tháng 11 2023

Em ghi đề cho chính xác lại. Sai tùm lum rồi

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) ABCD là hình thang nên AB//CD

Các vectơ cùng hướng với vectơ \(\overrightarrow {AB} \) là các vectơ có hướng từ trái qua phải nên đó là: \(\overrightarrow {DC} ,\overrightarrow {DM} ,\overrightarrow {MC} \)

b) \(\overrightarrow {DM} \)có hướng từ trái sang phải nên các vectơ ngược hướng với vectơ \(\overrightarrow {DM} \)là \(\overrightarrow {BA} ,\overrightarrow {MD} ,\overrightarrow {CM} ,\overrightarrow {CD} \)